Towards 'Off-the-Shelf ' Universal Chimeric Antigen Receptor (CAR) T Cells: Mouse Anti-3rd Party Central Memory CD8 Veto Cells Prolong Functional Engraftment of Allogeneic Genetically Modified T Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2171-2171
Author(s):  
Noga Or Geva ◽  
Rotem Gidron ◽  
Aloukick Kumar Singh ◽  
Rakefet Sidlik Muskatel ◽  
Yair Reisner

Abstract We recently demonstrated that mouse anti-3rd party central memory CD8 veto cells (Tcm) enable engraftment of fully mis-matched T cell depleted bone marrow (TDBM) in sublethally irradiated (5.5 Gy TBI) recipients (Eran et al. Blood 2013). Here we found that Tcm generated from (host x donor)F1 or fully allogeneic donors were able to engraft and sustain their presence in such sub-lethally irradiated mice in the absence of TDBM transplants. Limiting dilution analysis revealed that the reactivity of host T cells (HTC) against donor spleen cells was significantly diminished in the chimeric mice treated with Tcm, whereas reactivity against 3rd party was comparable betweenTcm treated and non-treated mice (Fig. 1). This specific immune tolerance indicated that vetoTcm could potentially enable the use of 'off-the-shelf' allogeneic CAR T cells or any other genetically modified T cells from the same donor. To further investigate this possibility, we tested the ability of Tcmveto cells to enable engraftment of CD8 T cells from OT1 mice, expressing a transgenic T cell receptor (TCR) directed againstovalbumin (OVA) residues 257-264 in the context of H2Kb MHC-I. To that end, 1x106 OT1 CD8 T cells (H2b) were infused into Balb/c (H2Dd) recipients sublethally irradiated with 5.25 Gy TBI in the presence or absence of different doses of veto Tcm. As shown in Fig. 2, when tested at 2 months post-transplant, OT1 cells could not be detected in the peripheral blood of untreated recipient mice, while they were readily detectable in mice receiving 2x106 Tcm (0.78±0.36), reaching a higher level (1.18± 0.61) upon infusion of 5x106Tcm. To evaluate the functionality of the engrafted OT1 T cells in the chimeric mice, we developed and calibrated a new murine model, using a melanoma B16-cell line of C57BL background that expresses the ovalbumin peptide and the tdTomatomarker (B16-OVA-tdTomato) (Fig 3A). In this model, we tried to mimic a state of minimal residual disease by injecting a small number of B16-OVAtdTomato melanoma cells (0.25x106) into syngeneic C57BL mice; we then treated the mice with sublethal irradiation (6Gy TBI) to simulate treatment of the tumor, but also to clear out space for the T-cell adoptive transfer. Finally, we injected 1x106 naïve OT-1 cells generated on a (Balb x-OT1-CD45.1+RAG2-) F1 background in the presence or absence of Balb/c veto Tcm (5x106), and followed the development of the tumor. We found thatBalb/c vetoTcm prolonged the engraftment of the transgenic donor-derived F1 OT1 CD8 T cells inBalb/c recipients, thereby enabling significantly improved control of tumor growth when tested at day 20 post-transplant ( p<0.05). In contrast non OVA-expressing tumor cells grew at the same rate in all treatment groups, thereby demonstrating the specificity of the anti-tumor effect (Fig.3B). Previous studies demonstrated that Tcmare depleted of GVH reactivity by virtue of their culture with 3rd party stimulators under cytokine starvation. Our present results demonstrate that suchTcm veto cells can pave the way for functional engraftment of CD8 T cells with genetically modified specificity. Taken together, these results provide a proof of concept for the potential clinical use of such veto cells to enable therapy with 'off-the-shelf ' allogeneic CAR T cells. The relative ease of growing humanTcm in large numbers over a short period of time (9-12 days) suggests that it could be possible to harvest byleukapheresis from a single donor, a sufficient number of cells, to support CAR therapy for more than 50 allogeneic recipients. * N.O.G and R.G equally contributed Disclosures Or Geva: Yeda LTD: Patents & Royalties. Gidron:Yeda LTD: Patents & Royalties. Reisner:Cell Source LTD: Consultancy, Equity Ownership, Patents & Royalties, Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1675-1675
Author(s):  
Ashish Sharma ◽  
Anne Roe ◽  
Filipa Blasco Lopes ◽  
Ruifu Liu ◽  
Jane Reese ◽  
...  

Abstract BACKGROUND: Chimeric antigen receptor (CAR) T cells have shown enormous promise in the treatment of certain B cell malignancies. Access to treatment is still limited due to a variety of issues, including pricing and centralized manufacturing models. Generation of CAR-T cells using an automated platform, followed by rigorous functional phenotyping, may contribute to the development of a robust long-lasting therapy. METHODS: Here, we used the Miltenyi Prodigy (Miltenyi Biotech, Bergisch Gladbach, Germany) to automate the process of manufacturing genetically manipulated T cells in a closed system. The system obviates the need for clean room infrastructure. We tested the feasibility of utilizing the Miltenyi Prodigy to manufacture CAR-T cells using a CD19 scFV vector with the 4-1BB co-stimulatory domain. (Lentigen Technology, Inc, Gaithersburg, MD). The purity, differentiation capacity and effector function of the enriched CAR-T cells was studied using high-dimensional flow cytometry. Finally, the functional potential of these cells was tested in vitro and by treating NOD-SCID-gamma (NSG) mice infused with B cell lymphoma cells (Raji B cell), with the CAR-T cells. RESULTS: Starting with 1 x 108 CD4 and CD8 cells from donor apheresis products, CAR-T cells were expanded for 12 days in culture media containing with TransAct (Miltenyi Biotech), IL7 and IL15. The mean fold-expansion at day 12 was 44 ± 5.6, range 39-50 (n=3). The mean transduction efficiency of CAR-T vector was 20%, range 10-25% (n=3), which is similar to other reported methods. The CD19 CAR-T product was enriched in both the CD4 and CD8 T cells subsets, and showed high-level of cytotoxicity against CD19+ cell lines in vitro and in vivo (Figure 1: Mice treated with the CD19-CAR T demonstrated a marked reduction in disease burden as compared to T cell control as measured by bioluminescence imaging and flow cytometric analysis). The CAR-T product was enriched in cell subsets with both effector (CD27-CCR7-; ~20% of total cells) and central memory phenotypes (CD27+CCR7+; ~30% of total T cells). The effector CD4 and CD8 T cells showed increased expression of major functional T cell differentiation transcription factors (i.e. T-bet and GATA3) critical for the development of anti-tumor responses. Whereas, the central CD4 and CD8 T cells were enriched for the expression of TCF7 (a stemness related member of the WNT signaling known to increase longevity of these cells). The frequencies and phenotypes of these cells were maintained in peripheral blood of NSG mice infused with B cell lymphoma cells (Raji B cells), 1 week after treatment. A significant expansion of CD8+ effector T cells and a dramatic reduction in tumor burden was observed over the next 4 weeks in all major organs. Interestingly, we observed that smaller proportion of central-memory like cells (with higher TCF7 levels) continued to persist 6 weeks post-treatment, potentially contributing to a long-lived recallable response. Based on these data we have initiated a phase 1 clinical trial to test the therapeutic potential of the CAR-T product in patients with advanced/refractory B cell lymphoma. The first clinical grade manufacturing run resulted in a CD19 + cell yield of 1.4 x109. CONCLUSION: Our data highlight that the automated CAR-T generation platform (i.e. Miltenyi Prodigy) is effective at the generating purified functionally competent CAR-T cells. Further, findings from our phenotyping analyses show that the CAR-T product is enriched in both effector and central memory subsets and is effective at tumor clearance in vivo. Thus far, we have treated one patient with CD19 CAR-T manufactured on this platform and 2 more have been enrolled. Though this initial study is based on CD19 CAR-T cells, the approach described here could easily be utilized to genetically engineer T cells with gene constructs that are more relevant for specific cancers and infectious diseases. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (18) ◽  
pp. 4483-4493
Author(s):  
Iosifina P. Foskolou ◽  
Laura Barbieri ◽  
Aude Vernet ◽  
David Bargiela ◽  
Pedro P. Cunha ◽  
...  

Abstract Cancer immunotherapy is advancing rapidly and gene-modified T cells expressing chimeric antigen receptors (CARs) show particular promise. A challenge of CAR-T cell therapy is that the ex vivo–generated CAR-T cells become exhausted during expansion in culture, and do not persist when transferred back to patients. It has become clear that naive and memory CD8 T cells perform better than the total CD8 T-cell populations in CAR-T immunotherapy because of better expansion, antitumor activity, and persistence, which are necessary features for therapeutic success and prevention of disease relapse. However, memory CAR-T cells are rarely used in the clinic due to generation challenges. We previously reported that mouse CD8 T cells cultured with the S enantiomer of the immunometabolite 2-hydroxyglutarate (S-2HG) exhibit enhanced antitumor activity. Here, we show that clinical-grade human donor CAR-T cells can be generated from naive precursors after culture with S-2HG. S-2HG–treated CAR-T cells establish long-term memory cells in vivo and show superior antitumor responses when compared with CAR-T cells generated with standard clinical protocols. This study provides the basis for a phase 1 clinical trial evaluating the activity of S-2HG–treated CD19-CAR-T cells in patients with B-cell malignancies.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 115-115 ◽  
Author(s):  
Sophia Danhof ◽  
Tea Gogishvili ◽  
Silvia Koch ◽  
Martin Schreder ◽  
Stefan Knop ◽  
...  

Abstract Background: SLAMF7 (CS1, CD319) is uniformly and highly expressed in multiple myeloma (MM) where it promotes adhesion and survival of malignant plasma cells (mPCs) in the bone marrow niche. It is absent on normal solid organ tissues but known to be expressed on lymphocyte subsets (T, B and NK cells). Clinical evaluation of the anti-SLAMF7 monoclonal antibody (mAb) Elotuzumab (huLuc63) has resulted in marked reversible lymphodepletion and conferred potent anti-MM efficacy in combination therapy. Here, we evaluated the potential to generate SLAMF7-directed chimeric antigen receptor (CAR) modified T cells from previously treated MM patients and analyzed their potency against autologous mPCs as well as fratricidal activity against normal lymphocyte subsets. Methods: Flow cytometric analyses for SLAMF7 expression on mPCs and normal lymphocyte subsets of MM patients (n=67) and healthy donors (n=20) was performed using specific mAbs and matched isotype controls. A SLAMF7-specific CAR was constructed using the VH/VL targeting domains of mAb huLuc63, fused to an Ig-Fc spacer and a signaling module of CD3ζ and CD28. Lentiviral gene transfer was performed into CD3/CD28-bead stimulated bulk CD4+ and CD8+ T cells of MM patients (n=7). CAR transgene positive T cells were enriched using an EGFRt transduction marker and expanded for functional analyses. Results: We confirmed high SLAMF7 expression levels on mPCs in all analyzed samples and detected SLAMF7 expression on a fraction of normal lymphocytes obtained from peripheral blood of MM patients, including naïve and memory CD4+ (95% CI: 33-59%) and CD8+ T cells (75-95%), B cells (25-35%) and NK cells (94-98%). Remarkably, the proportion of SLAMF7+ cells was significantly higher in MM patients compared to healthy donors in all corresponding lymphocyte subsets (p<0.05). Despite high level SLAMF7 expression on the input T cell population, functional CD4+ and CD8+ T cells expressing the SLAMF7-CAR could be readily generated in all 7 MM patients, and expanded to therapeutically relevant doses in a single expansion cycle following enrichment (>107 cells). We analyzed the kinetics of SLAMF7 expression on CD4+ and CD8+ CAR T cells during the manufacturing process and detected rapid disappearance of SLAMF7+ T cells in T cell lines modified with the SLAMF7-CAR. By contrast unmodified T cells and T cell lines expressing a CD19-CAR retained a significant proportion of SLAMF7+ T cells, suggesting that expression of the SLAMF7-CAR induced killing of SLAMF7+ T cells. In vitro functional testing of SLAMF7-CAR CD4+ and CD8+ T-cell lines confirmed potent specific lysis of SLAMF7+ MM cell lines including MM1.S and OPM-2 and stable SLAMF7-transfectants of K562, as well as antigen specific IFNγ secretion and productive proliferation. In a flow cytometry based cytotoxicity assay, co-incubation of mPCs with autologous (or allogeneic) SLAMF7-CAR T cells resulted in elimination of >90% of mPCs after a 4-hour incubation period, whereas CD19-CAR or unmodified T cells had no discernible effects. Moreover, in an in vivo xenograft MM model (NSG/MM1.S) a single administration of SLAMF7-CAR T cells resulted in complete MM clearance and long-term survival, whereas mice treated with CD19-CAR or unmodified T cells rapidly expired from progressive disease. Finally, we analyzed the fratricidal potential of SLAMF7-CAR T cells to predict hematologic toxicities that might occur in a clinical setting. Co-incubation of purified CD4+ and CD8+ primary T cells, B cells and NK cells with SLAMF7-CAR T cells resulted in rapid and specific elimination of only SLAMF7+ subsets, whereas SLAMF7- cells remained viable and functional as confirmed for CD4+ and CD8+ T cells by inducible IFNγ secretion. Conclusion: Our data demonstrate that SLAMF7-specific CAR T cells can be reproducibly generated from MM patients and exert remarkable anti-myeloma efficacy in pre-clinical models in vitro and in vivo. Lymphocytic fratricide does not preclude the manufacture of SLAMF7-CAR T cells but might be associated with acute (cytokine storm) or chronic (viral infections) side effects in a clinical setting. However, such toxicities may be prevented e.g. by preparative lymphodepletion and antiviral prophylaxis and enable the implementation of SLAMF7-CAR T cell therapy as a safe and effective modality in the treatment of MM. Disclosures Knop: Celgene Corporation: Consultancy. Einsele:Novartis: Consultancy, Honoraria, Speakers Bureau; Amgen/Onyx: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Cytotherapy ◽  
2013 ◽  
Vol 15 (4) ◽  
pp. S54
Author(s):  
S. Shen ◽  
N. Xu ◽  
G. Klamer ◽  
T.A. O'Brien ◽  
A. Dolnikov

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 678-678 ◽  
Author(s):  
Pei-Hsuan Chen ◽  
Mikel Lipschitz ◽  
Kyle Wright ◽  
Philippe Armand ◽  
Caron A. Jacobson ◽  
...  

Abstract BACKGROUND: Axicabtagene ciloleucel is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy that shows efficacy in patients with refractory diffuse large B-cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma and transformed follicular lymphoma after failure of conventional therapy. However, the exact mechanism of anti-tumor immunity is poorly understood, in part due to the dearth of data on the events in the tumor micro-environment (TME) that occur upon exposure to CAR-T cells. We sought to quantify and characterize both CAR-T cells and non-CAR T cells within the TME of DLBCL using tissue biopsy samples collected in the ZUMA-1 multicenter trial of CAR-T cell therapy for patients with refractory DLBCL. METHODS: Tumor samples obtained from patients 5-30 days (median 10 days) after CAR-T infusion ("CAR-treated", n=14) and randomly-selected untreated ("untreated ", n=15) archival DLBCL tissue samples were analyzed by multiplex immunofluorescence using formalin-fixed, paraffin embedded tissue sections, with successive labeling by the primary antibodies KIP-1 and/or KIP-3 (recognizing separate CD19 CAR epitopes), PAX5, PD-1, CD4, and CD8, followed by secondary amplification and tyramide-conjugated fluorophores. For each case, at least 3 representative 20x fields of view were selected and imaged using a multispectral imaging platform. Two specific image analysis algorithms were designed to accurately identify CD4 and CD8 T cells and PAX5+ DLBCL cells simultaneously, then to threshold PD-1 and KIP-1/-3 by relative fluorescent units (RFU) in each phenotype. RESULTS: We identified CAR T-cells within the fixed biopsy samples of CAR-treated DLBCLs by immunostaining with CAR T-cell specific antibody KIP-1; at the timepoints analyzed, CAR T-cells comprised only a small minority of total T- cells (<2%) and included CD4+ and CD8+ T-cells. Immunostaining with a second antibody, KIP-3, validated the presence of CAR T-cells in these cases and confirmed the KIP-1 results. Expression of the T cell activation marker PD-1 was detected among majority of KIP-1+ cells. Further analysis that included KIP1-negative cells revealed that the percentage of CD8+ cells co-expressing PD-1 across all CD8+ cells was higher in the CAR-treated DLBCLs compared to the untreated DLBCLs (mean 50.1% vs 17.5%, p<0.0001 with unpaired t test ), indicating CD8 T cell activation within the tumor environment. In contrast, PD-1 positivity across CD4+ T cells were equivalent between the two groups (mean 21.8% vs 21.6%, ns with unpaired t test). The percentages of total, CD4+, and CD8+ T-cell populations in the TME were similar between the CAR-treated DLBCL and untreated biopsies. CONCLUSIONS: CD4+ and CD8+ CAR-T cells can be detected in CAR-treated DLBCL patient tissue biopsies by multiplex immunofluorescence. At the time points analyzed to date, CAR-T cells comprise only a small percentage of all T-cells (<2%) within the TME. However, the presence of gene marked T cells with downregulated CAR protein expression is also possible. The activation marker PD-1 is preferentially expressed by KIP-1-negative CD8+ T cells compared to CD4+ T cells in CAR-T treated DLBCLs relative to untreated DLBCLs. These data implicate preferential activation of CD8+ non-CAR "by-stander" T-cells in the post CAR-T TME, and the possible benefit of combining PD-1 blockade with CAR-T therapy in DLBCL. *PH.C and M.L share equal contribution. Disclosures Armand: Otsuka: Research Funding; Affimed: Consultancy, Research Funding; Pfizer: Consultancy; Infinity: Consultancy; Adaptive: Research Funding; Merck: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Roche: Research Funding; Tensha: Research Funding. Roberts:KITE: Employment. Rossi:KITE: Employment. Bot:KITE: Employment. Go:KITE: Employment. Rodig:Merck: Research Funding; Bristol Myers Squibb: Research Funding; Affimed: Research Funding; KITE: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1909-1909 ◽  
Author(s):  
Meng Wang ◽  
Iulian Pruteanu ◽  
Adam D. Cohen ◽  
Alfred L. Garfall ◽  
Lifeng Tian ◽  
...  

Despite intense efforts, multiple myeloma remains incurable in most patients with the standard of care therapies. The plasma cell surface receptor B cell maturation antigen (BMCA) is highly expressed by myeloma cells and we recently demonstrated that 12 out of 25 heavily pretreated myeloma patients achieved a partial response or better after anti-BCMA CAR T cell treatment (VGPR, n=5; CR, n=1; sCR, n=1; Cohen et al., 2019, JCI 129(6):2210). To better understand the biological basis of this therapy, we identified key correlates of response using the pre-manufacturing apheresed T cells, the infusion product, and post-infusion T cells from the 25 patients in this cohort. As reported before, the disease characteristics, tumor burden, and CAR transduction efficiency did not correlate with therapy response. CAR T cell expansion, measured by the area under the curve of CAR qPCR in the first 21 days (AUC[0-21]), was highest in responding, lowest in non-responding patients (Jonckheere-Terpstra test, JT = 38, p=1.8x10^-6)(Fig.1A,B). Soluble BCMA, a biomarker of disease burden, shows a similar trend with response (Jonckheere-Terpstra test, JT = 54, p=1.2x10^-4). Furthermore, AUC[0-21] for CAR T cell expansion and soluble BCMA decline also strongly correlated (Spearman's rank correlation test, rho=0.82; p=2.41x10^-6), underscoring the quantitative relationship between CAR T cell expansion and tumor reduction. We have previously shown that response to CAR T cell therapy in CLL is largely determined by T cell memory function. To find if this extends to myeloma, we immunophenotyped apheresed T cells (or CAR-T precursor cells) and infusion product from the 25 patients. Phenotypically distinct T cell subpopulations were identified using shared-nearest-neighbor clustering method (PMID: 31178118) and their correlation with response to CAR T cell treatment was evaluated. This analysis revealed that among CD4+ and CD8+ CAR-T precursor cells, subpopulations representing naive and central memory T cells were enriched in T cells from responding patients, while non-responders displayed a distinctly activated effector phenotype at baseline. Additional analyses showed that apheresed CD8+ and CD4+ T cells from responder patients were non-cycling, granzyme B-negative, CTLA4[low] but otherwise largely immune checkpoint inhibitor-negative. CD8+ CAR-T precursor cells isolated from non-responders exhibited high expression levels of TIM3 or LAG3, and/or granzyme B, but not PD1, CTLA4, CD45RO or CD27. These data confirm the high activation, potential exhaustion and end-stage differentiation state of CAR-T precursor cells in this group. Similar analyses of infusion product CAR T cells did not reveal subpopulations associated with response. Clustering analysis of CD8+ CAR T cells within 20 days after infusion revealed a BCMA CAR-expressing cluster enriched in responding patients: a non-cycling, negatively regulated, Eomes-expressing central memory subset (cluster 0; Fig. 1E). Non-responding patients CAR-T cells displayed high levels of granzyme B and PD1 expression but were otherwise devoid of signs of activation (cluster 8; Fig. 1F). Furthermore, the abundance of CD8+ CAR-T cells with cluster 0 and 8 phenotype correlated significantly with in vivo expansion (AUC[0-21]; Fig. 1C). Four patients with a sufficiently high proportion of CAR expressing cells were phenotyped up to 125 days post-infusion. This analysis showed that the highly activated CAR T cell clusters 2 and 5 dominated at early phases post infusion but was rapidly replaced by non-cycling CAR T cells with downregulated CTLA4 and LAG3 but maintained expression of PD1 and TIM3 (cluster 0; Fig. 1D). Patient 27 with VGPR had a prominent effector population four months after infusion. BCMA-redirected CD4+ CAR T cells showed an enrichment of central memory phenotype CAR T cells in responding patients early after infusion, with high expression of Eomes, TIM3, and other immune checkpoint inhibitor molecules. This cluster also dominated the CD4 T cell repertoire in the first four months after infusion in the four responding patients. In conclusion, our data suggest that strategies to promote expression of Eomes and central memory function and reduce exhaustion in BCMA CAR T cells will enhance clinical activity. Further, these results underscore the "self-sustaining" feature of successful CAR T cell therapies in myeloma. Disclosures Pruteanu: Novartis: Employment. Cohen:Poseida Therapeutics, Inc.: Research Funding. Garfall:Tmunity: Honoraria, Research Funding; Amgen: Research Funding; Novartis: Patents & Royalties: inventor on patents related to tisagenlecleucel (CTL019) and CART-BCMA, Research Funding; Janssen: Research Funding; Surface Oncology: Consultancy. Lacey:Novartis: Patents & Royalties: Patents related to CAR T cell biomarkers; Tmunity: Research Funding; Novartis: Research Funding. Fraietta:Tmunity: Research Funding; Cabaletta: Research Funding; LEK Consulting: Consultancy. Brogdon:Novartis: Employment. Davis:Tmunity: Research Funding; Cabaletta: Research Funding. Levine:Tmunity Therapeutics: Equity Ownership; Avectas: Membership on an entity's Board of Directors or advisory committees; Vycellix: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; Novartis: Consultancy, Patents & Royalties, Research Funding; Cure Genetics: Consultancy; Incysus: Membership on an entity's Board of Directors or advisory committees; Brammer Bio: Membership on an entity's Board of Directors or advisory committees; CRC Oncology: Consultancy. Milone:Novartis: Research Funding; Novartis: Patents & Royalties: patents related to tisagenlecleucel (CTL019) and CART-BCMA. Stadtmauer:Janssen: Consultancy; Tmunity: Research Funding; Amgen: Consultancy; Abbvie: Research Funding; Novartis: Consultancy, Research Funding; Takeda: Consultancy; Celgene: Consultancy. June:Novartis: Research Funding; Tmunity: Other: scientific founder, for which he has founders stock but no income, Patents & Royalties. Melenhorst:National Institutes of Health: Research Funding; Parker Institute for Cancer Immunotherapy: Research Funding; Novartis: Research Funding, Speakers Bureau; Colorado Clinical and Translational Sciences Institute: Membership on an entity's Board of Directors or advisory committees; Stand Up to Cancer: Research Funding; Incyte: Research Funding; IASO Biotherapeutics, Co: Consultancy; Simcere of America, Inc: Consultancy; Shanghai Unicar Therapy, Co: Consultancy; Genentech: Speakers Bureau.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-35
Author(s):  
Moriah Rabin ◽  
Mengyan Li ◽  
Scott Garforth ◽  
Jacqueline Marino ◽  
Jian Hua Zheng ◽  
...  

Background: While chimeric antigen receptor T cells (CAR T-cells) induce dramatic remissions of refractory or recurrent B cell malignancies, the durability of these remissions is frequently limited by subsequent reduction in circulating CAR T-cells and/or by diminution of their effector function. We hypothesized that we could overcome this therapeutic limitation and increase the functional activity and longevity of CAR T-cells by selectively deriving them from virus-specific effector memory T cells. We have developed biologics we termed synTacs (artificial immunological synapse for T-cell activation), which selectively activate and expand antigen-specific CD8+ T cells in vitro and in vivo by recapitulating signals delivered at the immunological synapse. The synTacs consist of dimeric Fc domain scaffolds linking CD28- or 4-1BB-specific ligands to HLA-A2 MHC molecules covalently tethered to virus-derived peptides. Treatment of PBMCs from CMV-exposed donors with synTacs presenting a CMV-derived peptide (pp65-NLVPMVATV) induce vigorous and selective ex vivo and in vivo expansion of highly functional CMV-specific CD8+ T cells, with potent antiviral activity. We used these synTacs to selectively generate CAR T-cells from CMV-specific effector memory CD8+ T cells, which could be further expanded by restimulation with the CMV-specific synTacs. Methods: We treated PBMCs from CMV-exposed donors in media supplemented with either IL-2 or IL-7/12/15 with a synTac containing the CMV-derived pp65 peptide presented by HLA-A2 MHC molecules linked to ligands capable of stimulating CD28- or 4-1BB-dependent costimulatory pathways. PBMCs activated either with anti-CD3/CD28 or the CMV-specific synTacs were transduced with lentivirus expressing an anti-CD19 CAR and a GFP reporter gene. CMV-specific CD8+ T cells were quantified by tetramer staining and CAR T-cells were detected by GFP expression determined by flow cytometric analysis. The functional activity of the CD19 CAR T-cells was determined by a B cell-specific cytotoxic assay. Results: After 7 days, treatment of PBMCs with CMV-specific synTacs rapidly induced robust activation and &gt;50-fold expansion of CMV-specific CD8+ T cells expressing effector memory markers. Treatment of the PBMCs with CMV-specific synTacs selectively activated CMV-specific T cells and enabled them to be specifically transduced with a CD19-specific CAR lentivirus and converted into CD19 CAR T-cells. These CMV-specific CD19 CAR T-cells displayed potent dose-responsive cytotoxic activity targeting purified primary B cells. Furthermore, these CMV-specific CD19 CAR T-cells could be selectively expanded by in vitro treatment with CMV-specific synTacs. Conclusions: SynTacs are versatile immunotherapeutics capable of selective in vitro and in vivo activation and expansion of virus-specific CD8+ T cells with potent antiviral cytotoxic activity. After selective lentiviral transduction and conversion into CD19 CAR T-cells, their co-expression of the CMV-specific T cell receptor enabled them to be potently stimulated and activated by in vitro treatment with CMV synTacs. The modular design of synTacs facilitates efficient coupling of other costimulatory ligands - such as OX40 or GITRL - or cytokines, such as IL-2, IL-7, or IL-15, to enable the selective in vivo delivery of defined costimulatory signals or cytokines to the CAR T-cells expressing CMV-specific TCR. This strategy has the potential to boost the in vivo activity of tumor-specific CAR T-cells after infusion and enable more durable and potent treatment of refractory/recurrent B cell malignancies. Disclosures Almo: Cue Biopharma: Current equity holder in publicly-traded company, Patents & Royalties: Patent number: 62/013,715, Research Funding. Goldstein:Cue Biopharma: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2151-2151
Author(s):  
Bipulendu Jena ◽  
Natalya Belousova ◽  
George T McNamara ◽  
David Rushworth ◽  
Tiejuan Mi ◽  
...  

Abstract Human epidermal growth factor receptor (EGFR) family consists of four members i.e. EGFR (HER1), HER2 (ErbB2), HER3 (ErbB3,) and HER4 (ErbB4). Overexpression, mutation, or catalytic activation of these proteins can lead to malignancies in breast, ovarian, colorectal, pancreatic and lung. Therapies targeting EGFR-associated proteins to disrupt signaling may fail because of crosstalk within the EGFR family or among downstream pathways. One mechanism of escape is HER3 activation and concomitant heterodimer formation with HER1 causing disease relapse and treatment failure. A bi-specific monoclonal antibody (mAb, MEHD7945A) can specifically bind an epitope shared between HER1-HER3 heterodimer thereby blocking EGFR-HER3 mediated signaling (Schaefer et al., Cancer Cell, 2011). We now report that the specificity of this mAb can be used to redirect the specificity of T cells through enforced expression of a chimeric antigen receptor (CAR) targeting the HER1-HER3 heterodimer, such as expressed on breast cancer cells. A 2nd generation CAR targeting the HER1-HER3 heterodimer was expressed from DNA plasmid constituting scFv (designated DL11f, derived from mAb MEHD7945A) coupled to CD3-zeta fused in frame with chimeric CD28 or CD137 T-cell signaling domains on a clinical-grade Sleeping Beauty (SB) backbone. T cells were electroporated with SB system and numerically expanded on irradiated “universal” activating and propagating cells (uAaPC) (Rushworth et al., J Immunotherapy, 2014). These feeder cells are derived from K-562 cells engineered to co-express a CAR activating ligand (CAR-L, a scFV specific to CAR stalk) to sustain proliferation of genetically modified T cells. We validated CAR expression on genetically modified T cells by flow cytometry and western blot. The specificity of HER1-HER3 specific CAR T cells was confirmed in situ by a proximity ligation-based assay using breast cancer cells. The redirected killing by CAR+ T cells to HER1+HER3+ breast cancer cells was confirmed in vitro and its efficacy evaluated in vivo in NSG mice bearing a breast tumor xenograft. HER1-HER3 specific CAR+ T cells activated via CD137 signaling exhibited superior proliferation compared with T cells expressing CAR with CD28 signaling domain. This is consistent with the ability of CD3-zeta/CD137 endodmain to alter mitochondrial metabolism and to suppress apoptosis leading to proliferation after initial activation. In summary, we report a new CAR design that can interrogate the conformation between two tumor-associated antigens (TAAs). This will likely improve specificity and limit on-target off-tissue side effects compared to CARs targeting only HER-1 or HER-3. Thus, targeting an epitope derived from two TAAs may help distinguish normal cells versus malignant cells and treat HER1+HER3+ malignancies that are resistant to therapies targeting single EGFR family members. These data have immediate translation appeal for targeting solid tumors as we use the SB and AaPC platforms to manufacture CAR+ T cells in our clinical trials. Disclosures Cooper: InCellerate: Equity Ownership; Sangamo: Patents & Royalties; Targazyme: Consultancy; GE Healthcare: Consultancy; Ferring Pharmaceuticals: Consultancy; Fate Therapeutics: Consultancy; Janssen Pharma: Consultancy; BMS: Consultancy; Miltenyi: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4437-4437 ◽  
Author(s):  
Eric R. Lutz ◽  
Srikanta Jana ◽  
Lakshmi Rudraraju ◽  
Elizabeth DeOliveira ◽  
Jing Zhou ◽  
...  

Background The type of T cell used in generating chimeric antigen receptor (CAR) T cells is an important choice. Evidence suggests that T cells that are early in the effector/memory differentiation pathway with more stemness and greater potential to persist are better than more differentiated T cells with less stemness that are more readily exhausted and have less potential to persist. Marrow-infiltrating Lymphocytes (MILsTM) is a novel form of adoptive T cell therapy composed of patient-autologous, polyclonal CD4 and CD8 T cells that are activated and expanded from the bone marrow. Genetically unmodified MILsTM have demonstrated antitumor activity in patients with multiple myeloma and are being developed for several other tumor types, including non-small cell lung cancer and other solid tumors. Distinguishing features of bone marrow T cells used to produce MILsTM include their memory phenotype, inherent tumor antigen-specificity, higher CD8:CD4 ratio and ability to persist long-term when compared to peripheral blood lymphocytes (PBLs) which is the T cell source used to produce currently approved CAR-T therapies. Based on these differences, we hypothesize that MILsTM provide a more robust and better fit platform for CAR-T therapy compared to PBLs. Using a CD38-specific, 4-1BB/CD3z-signaling CAR as an initial model, we have demonstrated the feasibility of producing CAR-modified MILsTM (CAR-MILsTM) and showed that CAR-MILsTM demonstrate superior killing in vitro compared to CAR-T cells generated from patient-matched PBLs (CAR-PBLs). Herein, we build on our previous data and add a second BCMA-specific CAR model. We use the two multiple myeloma model systems to compare cytolytic potential, functionality, and expression of phenotypic markers of memory, stemness and exhaustion between patient-matched CAR-MILsTM and CAR-PBLs. Methods Matched pairs of CAR-MILsTM and CAR-PBLs were produced from the bone marrow and blood of multiple myeloma patients. Two different in vitro cytotoxicity assays, the RTCA xCelligence real-time impedance and FACS assays, were used to evaluate antigen-specific killing of target tumor cells. Functionality of CD4 and CD8 CAR-T cells, at the single-cell level, was evaluated by measuring the secretion of 32 cytokines and chemokines following in vitro antigen-specific stimulation using IsoPlexis IsoCode chips and analyzed using IsoPeak. Expression of markers of T cell memory (CD45RO & CCR7/CD62L), stemness (CD27) and exhaustion (PD1 & TIM3) on CAR-MILsTM and CAR-PBLs prior to and following antigen-specific stimulation was evaluated by flow-cytometry (FACS). Results CAR-MILsTM demonstrated superior killing of tumor target cells in vitro, regardless of the antigen specificity of the CAR, when compared to matched CAR-PBLs and this superiority persisted even upon repeated antigen encounter - a factor that may be critical in guaranteeing better anti-tumor efficacy and persistence. CAR-MILsTM demonstrated increased polyfunctionality (secretion of 2+ cytokines per cell) and an increased polyfunctional strength index (PSI) following antigen-stimulation compared to CAR-PBL in both CD4 and CD8 T cells. The enhanced PSI in CAR-MILsTM was predominately mediated by effector, stimulatory and chemoattractive proteins associated with antitumor activity including Granzyme B, IFNg, IL-8, MIP1a and MIP1b. Coincidentally, increased PSI and enhanced secretion of these same proteins was reported to be associated with improved clinical responses in patients with Non-Hodgkin lymphoma treated with CD19-specific CAR-T therapy. Expression of memory markers on CD4 and CD8 T cells were similar in CAR-MILsTM and CAR-PBLs both prior to and following antigen-stimulation. Although expression of CD27, PD1 and TIM3 were similar at baseline, CAR-MILs maintained higher levels of CD27 and lower levels of PD1 and TIM3 compared to CAR-PBLs following antigen-stimulation in both CD4 and CD8 T cells. Conclusions Collectively, our data suggest that CAR-MILsTM have several advantages over CAR-PBLs, including increased cytolytic potential, enhanced polyfunctionality, increased stemness and less exhaustion. Based on these differences and the inherent antitumor properties of MILsTM, we speculate that CAR-MILsTM would be more potent and effective than currently approved CAR-T products derived from PBLs. Disclosures Lutz: WindMIL Therapeutics: Employment, Equity Ownership. Jana:WindMIL Therapeutics: Employment, Equity Ownership. Rudraraju:WindMIL Therapeutics: Employment, Equity Ownership. DeOliveira:WindMIL Therapeutics: Employment, Equity Ownership. Zhou:Isoplexis: Employment, Equity Ownership. Mackay:Isoplexis: Employment, Equity Ownership. Borrello:Aduro: Patents & Royalties: intellectual property on allogeneic MM GVAX; BMS: Consultancy; WindMIL Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Celgene: Honoraria, Research Funding, Speakers Bureau. Noonan:WindMIL Therapeutics: Employment, Equity Ownership, Patents & Royalties; Aduro: Patents & Royalties: intellectual property on allogeneic MM GVAX.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4424-4424
Author(s):  
Reona Sakemura ◽  
Seitaro Terakura ◽  
Keisuke Watanabe ◽  
Kotaro Miyao ◽  
Daisuke Koyama ◽  
...  

Abstract Introduction: Genetic modification of T cells with chimeric antigen receptor (CAR) has emerged with astonishing treatment outcomes for B cell malignancies. Clinical trials of CAR-T therapy demonstrated toxicities such as hypogammaglobulinemia due to B cell aplasia or hemophagocytic syndrome after overactivation of CAR-T cells. These toxicities are considered as major drawbacks for broader application of CAR-T therapy. To overcome these serious adverse events, further modification of CAR-T technology to control CAR expression arbitrary is needed. Therefore we aimed to develop inducible CAR expressing T cells based on tetracycline-regulation system. Methods: We developed a novel inducible CD19CAR system by infusing anti-CD19-CD3z-CD28-tEGFR into pRetroX-TetOne vector (Tet-19CAR). By using Tet-19CAR transduced SUPT1 (T cell line), expression and disappearance kinetics of CAR were determined. We also retrovirally transduced Tet-19CAR into human CD8+ T cells, and achieved more than 90% purity of CAR positive T cells after a selection with anti-EGFR mAb. These CAR-T cells were again expanded with anti-CD3/28 beads and used in 51 Cr release assay, coculture assay, cytokine release assay and T cell proliferation assay. Regarding coculture assay, CD19 transduced K562-CD19 (K562-CD19) was labeled with 0.1 nM CFSE and plated with CAR-T cells at a ratio of 1:1 without IL-2 supplementation and incubated for 96 hours. Finally we examined this system in NOG mice. We injected 0.5 x 106 Raji-ffluc (fire-fly luciferase) followed by 5.0 x 106 CAR-T cells from the tail vein, then we evaluated the tumor flux by in vivo imaging system on days 7, 14, 21, and 30. Results: With more than 100 ng/mL of Doxycycline (Dox), CD19CAR was successfully expressed on both of SUPT1 and CD8+ T cells. For maximum and minimum expression, 24 and 72 hours were needed after addition and discontinuation of Dox, respectively. To determine the cytotoxicity of Tet-19CAR-T cells according to presence or absence of Dox, we performed 51 Cr release assay and coculture assay against K562-CD19. In the presence of Dox, Tet-19CAR showed an equivalent lytic activity to conventional CD19CAR-T cells (c19CAR). In contrast, Tet-19CAR without Dox exhibited significantly lower cytotoxicity against CD19+ target cells. (Dox (-) Tet-19CAR, Dox (+) Tet-19CAR and c19CAR: 14.0±4.0%, 38.0±4.0% and 37.0±2.0% at an E:T ratio = 10:1, respectively). In the coculture assay, Tet-19CAR with Dox eradiated K562-CD19, while they failed to suppress the target cells without Dox. In the intracellular IFN-g assay against K562-CD19, a similar proportion of responder was IFN-g + in Tet-19CAR with Dox and c19CAR. On the other hand, a significantly low proportion of IFN-g + cells were observed in Tet-19CAR without Dox. (Dox (-) Tet-19CAR, 1.0%±0%, Dox (+) Tet-19CAR, 19.1%±6.0% and c19CAR 21.5%±4.0%, respectively) Similar to intracellular IFN-g assay, ELISA revealed that Tet-19CAR with Dox and c19CAR produced IL-2 and IFN-g equally well. However, Tet-19CAR without Dox hardly did. [IL-2 (ng/ml): Dox (-) Tet-19CAR, 1.00±0.060, Dox (+) Tet-19CAR, 9.25±0.30 and c19CAR 8.75±0.68; IFN-g (ng/ml): 2.32±1.24, 57.96±6.95 and 62.42±5.95] (Fig). We next analyzed CAR-T cell proliferation upon stimulation with K562-CD19 over 96 hours. Tet-19CAR with Dox showed 6-7 fold expansion, whereas Tet-19CAR without Dox failed to proliferate. Regarding in vivo model, the mice treated with c19CAR or Tet-19CAR with Dox showed significantly low tumor flux but the mice treated with Tet-19CAR without Dox showed higher tumor burden at day 21 of CAR-T cell infusion [Photons/sec: Dox (-) Tet-19CAR, 2.5 x 1010, Dox (+) Tet-19CAR, 6.4 x 108 and c19CAR, 8.4 x 108 ]. Conclusions: We generated tetracycline-inducible CAR-T cells and successfully controlled the CAR expression with Dox administration. Tet-19CAR without Dox still demonstrated some CD19CAR expression and subsequent cytotoxicity against CD19 positive cells. Nonetheless the CAR expression level of Tet-19CAR without Dox was lower than the threshold for exhibiting positive responses in the function assays such as cytokine production and proliferation. This phenomenon was also confirmed in the xenograft model. To regulate CAR expression more precisely and pursue clinical translations in combinations with other CARs, further efforts are needed to reduce any leaky CAR expression by modification of the system. Figure 1. Figure 1. Disclosures Kiyoi: Pfizer Inc.: Research Funding; Eisai Co., Ltd.: Research Funding; Yakult Honsha Co.,Ltd.: Research Funding; Alexion Pharmaceuticals: Research Funding; MSD K.K.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Taisho Toyama Pharmaceutical Co., Ltd.: Research Funding; Teijin Ltd.: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Japan Blood Products Organization: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; FUJIFILM RI Pharma Co.,Ltd.: Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; FUJIFILM Corporation: Patents & Royalties, Research Funding; Zenyaku Kogyo Co., Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Consultancy, Research Funding; Bristol-Myers Squibb: Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding; Novartis Pharma K.K.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document