ELMO1 Is a Novel Negative Regulator of Glycoprotein VI Signaling in Platelets

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2533-2533
Author(s):  
Akruti Patel ◽  
Soochong Kim ◽  
John Kostyak ◽  
Rachit Badolia ◽  
Carol Dangelmaier ◽  
...  

Abstract PI3-kinase (phosphoinositide 3-kinase) is an important signaling molecule that is activated downstream of various receptors upon platelet activation. PI3-kinase activation leads to the generation of PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate) subsequently leading to the recruitment of PH (pleckstrin homology) domain containing proteins to the plasma membrane. Our laboratory screened for proteins that interacted with PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate) using PIP3 beads. One of the proteins that interacted with PIP3 was ELMO1 (Engulfment and cell motility-1). ELMO1 is a scaffold protein with no catalytic activity and is well known to regulate actin cytoskeletal rearrangement via Rac1 in other cells. However, it is not known whether ELMO1 is expressed in platelets and if so, does it regulate platelet functional responses. Here, we show that ELMO1 is present in both human and murine platelets. We used ELMO1-deficient (ELMO1-/-) mice to study its role in platelets. ELMO1-/- murine platelets showed enhanced platelet aggregation and dense granule secretion in response to the GPVI agonist, CRP (Figure 1 A & B), compared to the wildtype controls although there was no difference in GPVI expression levels between the two. There was no difference observed in response to AYPGKF- or 2-MeSADP. These data suggest that ELMO1 plays a specific role downstream of GPVI pathway but GPCRs. Moreover, ELMO1-/- platelets exhibited enhanced clot retraction and spreading indicating its role in Glycoprotein IIb/IIa (GPIIb/IIIa) mediated outside-in signaling. Furthermore, whole blood from ELMO1-/- mice perfused over collagen under arterial shear conditions exhibited enhanced thrombus formation. In an in vivo pulmonary thromboembolism model, ELMO1-/- mice showed reduced survival compared to the wildtype control. ELMO1-/- mice also showed shorter time to occlusion and increased thrombus stability using the ferric-chloride injury model indicating the role of ELMO1 in thrombus formation in vivo. At the molecular level, Rac1 activity was enhanced in ELMO1-/- murine platelets compared to the wildtype control in response to CRP (Figure 1C). Together, these data suggest that ELMO1 regulates Rac1 activity upon GPVI-mediated thrombus formation and it may play a negative regulator role in both inside-out and outside-in signaling, which might involve Rac1. Figure 1 Representative figure of (A) platelet aggregation and (B) dense granule secretion. (C) Washed platelets were stimulated with CRP 1.25 μg/mL for the indicated times. GST-PAK-RBD was used to pull-down active Rac1 from platelet lysates and was detected using specific antibody to Rac1 by Western blot. WT = Wildtype mice. ELMO1-/- = ELMO1-deficient mice. CRP = collagen related protein. Figure 1. Representative figure of (A) platelet aggregation and (B) dense granule secretion. (C) Washed platelets were stimulated with CRP 1.25 μg/mL for the indicated times. GST-PAK-RBD was used to pull-down active Rac1 from platelet lysates and was detected using specific antibody to Rac1 by Western blot. WT = Wildtype mice. ELMO1-/- = ELMO1-deficient mice. CRP = collagen related protein. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 10 (20) ◽  
pp. 4743
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Soochong Kim

Arrestins in concert with GPCR kinases (GRKs) function in G protein-coupled receptor (GPCR) desensitization in various cells. Therefore, we characterized the functional differences of arrestin3 versus arrestin2 in the regulation of GPCR signaling and its desensitization in platelets using mice lacking arrestin3 and arrestin2. In contrast to arrestin2, platelet aggregation and dense granule secretion induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in arrestin3-deficient platelets compared to wild-type (WT) platelets, while non-GPCR agonist CRP-induced platelet aggregation and secretion were not affected. Surprisingly, in contrast to GRK6, platelet aggregation induced by the co-stimulation of serotonin and epinephrine was significantly potentiated in arrestin3-deficient platelets, suggesting the central role of arrestin3 in general GPCR desensitization in platelets. In addition, the second challenge of ADP and AYPGKF restored platelet aggregation in arrestin3-deficient platelets but failed to do so in WT and arrestin2-deficient platelets, confirming that arrestin3 contributes to GPCR desensitization. Furthermore, ADP- and AYPGKF-induced Akt and ERK phosphorylation were significantly increased in arrestin3-deficient platelets. Finally, we found that arrestin3 is critical for thrombus formation in vivo. In conclusion, arrestin3, not arrestin2, plays a central role in the regulation of platelet functional responses and thrombus formation through general GPCR desensitization in platelets.


Blood ◽  
2016 ◽  
Vol 127 (7) ◽  
pp. 927-937 ◽  
Author(s):  
Ming Yue ◽  
Dongjiao Luo ◽  
Shanshan Yu ◽  
Pu Liu ◽  
Qi Zhou ◽  
...  

Key Points MINK1 promotes hemostasis and thrombosis in vivo. MINK1 specifically regulates platelet dense-granule secretion.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2762-2762
Author(s):  
Yiwen Zhang ◽  
Jian Zhang ◽  
Rong Yan ◽  
Jie Zhang ◽  
Mengxing Chen ◽  
...  

Abstract Objective: Receptor-interacting protein 3 (RIP3) is a member of RIP family with a Ser/Thr protein kinase domain in its amino-terminus which is essential for kinase activity and autophosphorylation. The roles of RIP3 in embryonic development and different disease pathologies, such as inflammation and infections, have been reported in recent years. However, the role of RIP3 in thrombosis and hemostasis remains unknown. Methods: Hematologic analysis was performed and tail bleeding time was monitored. Mouse platelets were isolated from anti-coagulated whole blood. Platelet aggregation and secretion were recorded at real time. Platelet P-selectin exposure and specific fibrinogen binding were detected by flow cytometry. TXA2 generation was measured with enzyme immunoassay (EIA) kit. Protein phosphorylations were detected by western blotting. Result: RIP3-/- mice had tail-bleeding times that were significantly prolonged compared with their wild type littermates. In an in vivo model of mesenteric arteriole thrombosis, mice lacking RIP3 exhibited delayed thrombus formation, fewer accumulated platelets, smaller thrombi, and prolonged occlusion times. RIP3 was expressed in both human and mouse platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 (TXA2) analogue, U46619. The defect in ADP secretion appears responsible for the impaired platelet aggregation, because addition of exogenous ADP rescued the reduced platelet aggregation. Although TXA2 generation and α-granule secretion were not impaired, integrin αIIbβ3 activation was attenuated in RIP3-/- platelets. Moreover, phosphorylation of Akt induced by U46619 or thrombin was markedly reduced in the absence of RIP3. Activation of Akt signaling restored the impaired aggregation of RIP3-/- platelets. ERK and p38 phosphorylation elicited by either U46619 or thrombin was attenuated in RIP3-/- platelets. In contrast, U46619- and thrombin-induced activation of PTEN, PDK1, or Src was not impaired in RIP3-/- platelets. Conclusion: Our data demonstrate a novel role for RIP3 in amplifying U46619- and thrombin-induced platelet activation by mediating Akt-dependent ADP secretion, and in supporting hemostasis and thrombus formation in vivo. RIP3 may represent a novel target to modulate PARs and TP signaling and a potential new target for antithrombotic strategy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (5) ◽  
pp. 932-933 ◽  
Author(s):  
Walter H. A. Kahr

In this issue of Blood, Graham and colleagues demonstrate the importance of platelet dense granule secretion for in vivo platelet accumulation following laser injury, which is mediated by the SNARE protein Endobrevin/VAMP-8.


2021 ◽  
Author(s):  
Anastasia A Masalceva ◽  
Valeriia N Kaneva ◽  
Mikhail A Panteleev ◽  
Fazoil Ataullahanov ◽  
Vitaly Volpert ◽  
...  

Platelet accumulation at the site of vascular injury is regulated by soluble platelet agonists, which induce various types of platelet responses, including integrin activation and granule secretion. The interplay between local biochemical cues, mechanical interactions between platelets and macroscopic thrombus dynamics is poorly understood. Here we describe a novel computational model of microvascular thrombus formation for detailed analysis of thrombus mechanics. Adopting a previously developed two-dimensional particle-based model focused on the thrombus shell formation, we revise it to introduce platelet agonists. Blood flow is simulated via computational fluid dynamics approach. In order to model soluble platelet activators, we apply Langevin dynamics to a large number of non-dimensional virtual particles. Taking advantage of the available data on platelet dense granule secretion kinetics, we model platelet degranulation as a stochastic agonist-dependent process. The new model qualitatively reproduces enhanced thrombus formation due to granule secretion in line with in vivo findings and provides a mechanism for thrombin confinement at the early stages of aggregate formation. Our calculations also predict that release of dense granules results in additional mechanical stabilization of the inner layers of the thrombus. Distribution of the inter-platelet forces throughout the aggregate reveals multiple weak spots in the outer regions of thrombus, which are expected to result in mechanical disruptions at the later stages of thrombus formation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 361-361 ◽  
Author(s):  
Robert C. Flaumenhaft ◽  
Secil Koseoglu ◽  
James R. Dilks ◽  
Christian G. Peters ◽  
Nathalie A. Fadel ◽  
...  

Abstract Abstract 361 Platelet granule secretion serves a central role in hemostasis and thrombosis. During platelet secretion, fusion of granule membranes with those of the plasma membrane results in the release of granule contents. Recently electrochemical techniques using single-cell amperometry have shown that platelet membrane fusion results in the formation of a fusion pore. The fusion pore subsequently expands to enable the complete extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore formation and expansion are not known. To discover novel components of the platelet secretory machinery, we tested >300,000 compounds in a forward chemical genetic screen designed to identify inhibitors of dense granule secretion. A compound, ML160, was found that blocked dense granule release with an IC50 of approximately 0.5 μM. ML160 was also identified in an unrelated high throughput screen designed to detect inhibitors of dynamin-related protein-1 (Drp-1). Although best known as mediators of membrane fission, dynamins also contribute to granule exocytosis by controlling fusion pore expansion. Immunoblot analysis of platelet pellets and supernatants confirmed the presence of Drp-1 in platelets and demonstrated nearly equal distribution between platelet membranes and cytosol. mDivi-1, a well-characterized small molecule inhibitor of Drp-1 that acts outside of the GTP binding site, blocked PAR1-mediated platelet dense granule and α-granule release with an IC50 of approximately 20 μM. mDivi-1 also inhibited granule release induced by the thromboxane receptor agonist U46619, PMA, or Ca2+ ionophore, indicating that Drp-1 acts distally in the secretory pathway. To assess whether Drp-1 functions in platelet fusion pore dynamics, we tested the effect of mDivi-1 on the release of dense granules from rabbit platelets using single-cell amperometry. This technique monitors the release of serotonin from single granules in real-time with sub-millisecond temporal resolution. mDivi-1 exposure (10 μM) retarded each release event, resulting in a prolonged spike width of 23.00 ± 1.702 msec compared to the control value of 14.71 ± 1.194 msec. Although this concentration of mDivi-1 did not change the overall percentage of the fusion pore events or the amount of serotonin released through the fusion pore, it showed a distinct effect on the transition from stable fusion pore to maximal fusion pore dilation (% foot= 17.46 ± 1.809%, 9.464 ± 2.014% for control and mDivi-1 conditions, respectively). Evaluation of fluorescein-dextran incorporation into activated platelets by fluorescence microscopy enabled visualization of fusion pore dynamics and confirmed the effect of mDivi-1 on fusion pore expansion. To assess whether Drp-1 participates in platelet function in vivo, we determined the effect of mDivi-1 on thrombus formation following laser-induced injury of mouse cremaster arterioles. mDivi-1 inhibited platelet accumulation at the site of vascular injury by 74%. In contrast, mDivi-1 had no significant effect on fibrin formation under the same conditions. These results identify Drp-1 in platelets, demonstrate a role for Drp-1 in fusion pore dynamics, and indicate that pharmacological regulation of platelet fusion pore expansion can be used to control thrombus formation in vivo. Disclosures: No relevant conflicts of interest to declare.


1981 ◽  
Author(s):  
C M Chesney ◽  
D D Pifer

PGI2,which increases platelet cAMP(Prostaglandins 13: 389,1977),is a potent inhibitor of aggregation and secretion .We stidued the time course of the same return of platelet function after exposure of platelets to PGI2.Sepharose 2B columns were equilibrated with Tyrode’s albumin buffer, pH7.5 (no Ca2+) containing PGI2 (534nM). Platelet rich plasma was applied and eluted with the same buffer. The filtered platelets(GFP) were then subsampled hourly after elution from the column. Fibrinogen was added to finel concentration of 1.7mg/ml. Platelet aggregation(PA) and release of 14C serotonin (5HT),platelet factor 4(PF4), and factor V (FV) were assayed after stimulation of the platelet by collagen(C), ADP,epinephrine(E), arachidonic acid(AA) and ionophore A23187(I). Data representative of 5 separate studies follow.I(20μg/ml) induced PA was 76%(Ohr),52%(1hr) and 61%(2hr and beyond). Release of 5HT, FV,and PF4 were 60%,1.89u,and 7.97 yg/10 pit, respectively, at time 0 and increased progressively, reaching a plateau at 2 hr. AA(500μg/ml) was 10%(0hr),30%(2hr),68%(3hr) and 8%(4hr). Release of 5HT paralleled PA but release of FV and PF4 remained suppressed for 4 hrs. In contrast α-granule (PF4 and FV)release by C(μg/ml)increased as PA increased while dense granule secretion remained suppressed. PA as well as a and dense granule secretion by ADP (10μM) were minimal during 4 hrs. PA and FV secretion by E (55μM) also remain inhibited for 4 hrs. In spite of this normal dense granule release occurred initially and declined progressively over 4 hours.


Blood ◽  
2011 ◽  
Vol 118 (2) ◽  
pp. 416-424 ◽  
Author(s):  
Olga Konopatskaya ◽  
Sharon A. Matthews ◽  
Matthew T. Harper ◽  
Karen Gilio ◽  
Judith M. E. M. Cosemans ◽  
...  

Abstract Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dong-Seon Kim ◽  
Hyun Dong Ji ◽  
Man Hee Rhee ◽  
Yoon-Young Sung ◽  
Won-Kyung Yang ◽  
...  

Ethnopharmacological Relevance.Morus albaL. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis.Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrinαIIbβ3and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formationin vivowas also evaluated in arteriovenous shunt model of rats.Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2formation. In addition, the extractin vivoactivity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P<0.001), 28.3% (P<0.01), and 19.1% (P<0.05), respectively.Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1060-1060
Author(s):  
Soochong Kim ◽  
Carol Dangelmaier ◽  
Dheeraj Bhavanasi ◽  
Shu Meng ◽  
Hong Wang ◽  
...  

Abstract We investigated the mechanism of activation and functional role of a hitherto uncharacterized signaling molecule, RhoG, in platelets. RhoG is a ubiquitously expressed member of the Rho Family of GTPases. We demonstrated for the first time the expression [Fig 1A] and activation of RhoG [Fig 1B] in platelets. Platelet aggregation and dense-granule secretion in response to glycoprotein VI (GPVI) agonists, collagen-related peptide (CRP) and convulxin were significantly inhibited in RhoG-deficient platelets compared to wild type murine platelets [Fig 1C]. Integrin αIIbβ3 activation and α-granule secretion as measured by flow cytometry were also significantly inhibited in RhoG-deficient murine platelets downstream of GPVI agonists. In contrast, 2-MeSADP- and AYPGKF-induced platelet aggregation and secretion [Fig 1D] were minimally affected in RhoG deficient platelets, indicating that the function of RhoG in platelets is GPVI-specific.Figure 1(A): Increasing amounts of human platelet lysate (in μg) were separated by SDS-PAGE, Western blotted, and probed with anti-RhoG antibody. (B) RhoG activation was measured upon stimulation of washed human platelets with 5μg/ml CRP for various times. Washed platelets were lysed and active GTP-bound RhoG was determined by pull-down analysis using bacterially expressed GST-ELMO. (C) Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with GPVI agonists, 2.5 μg/ml CRP and 100 ng/ml convulxin and (D) G protein coupled receptor agonists, 30 nM 2MeSADP and 100 μM AYPGKF for 3.5 min under stirring conditions. Platelet aggregation and ATP secretion were measured by aggregometry.Figure 1. (A): Increasing amounts of human platelet lysate (in μg) were separated by SDS-PAGE, Western blotted, and probed with anti-RhoG antibody. (B) RhoG activation was measured upon stimulation of washed human platelets with 5μg/ml CRP for various times. Washed platelets were lysed and active GTP-bound RhoG was determined by pull-down analysis using bacterially expressed GST-ELMO. (C) Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with GPVI agonists, 2.5 μg/ml CRP and 100 ng/ml convulxin and (D) G protein coupled receptor agonists, 30 nM 2MeSADP and 100 μM AYPGKF for 3.5 min under stirring conditions. Platelet aggregation and ATP secretion were measured by aggregometry. CRP-induced phosphorylations of Syk, Akt and ERK, but not Src family kinases (SFKs), were significantly reduced in RhoG-deficient platelets compared to those of wild type [Fig 2A]. Consistently, CRP-induced RhoG activation was abolished by pan-SFK inhibitor but not by Syk or PI 3-kinase inhibitors [Fig 2B]. Interestingly, unlike CRP, platelet aggregation and Syk phosphorylation induced by fucoidan, a CLEC-2 agonist, were unaffected in RhoG deficient platelets [Fig 2C].Figure 2(A): Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with 2.5 μg/ml CRP and at 37 °C for 2 min and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Src (Tyr416), anti-phospho-Akt (Ser473), anti-phospho-ERK, or anti-β-actin (lane loading control) antibodies by western blotting. (B): RhoG activation induced by 5μg/ml CRP for 60 sec was evaluated in the presence and absence of 10 μM PP2, 2 μM OXSI-2, or 100nM wortmannin. (C): Wild type and RhoG-deficient platelets were stimulated with 100 μg/ml fucoidan and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Akt (Ser473), or anti-β-actin (lane loading control) antibodies by western blotting.Figure 2. (A): Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with 2.5 μg/ml CRP and at 37 °C for 2 min and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Src (Tyr416), anti-phospho-Akt (Ser473), anti-phospho-ERK, or anti-β-actin (lane loading control) antibodies by western blotting. (B): RhoG activation induced by 5μg/ml CRP for 60 sec was evaluated in the presence and absence of 10 μM PP2, 2 μM OXSI-2, or 100nM wortmannin. (C): Wild type and RhoG-deficient platelets were stimulated with 100 μg/ml fucoidan and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Akt (Ser473), or anti-β-actin (lane loading control) antibodies by western blotting. Finally, RhoG -/- mice had a significant delay in time to thrombotic occlusion in cremaster arterioles compared to wild type littermates [Fig 3A and 3B], indicating the important in vivo functional role of RhoG in platelets.Figure 3(A): Time required for occlusion of cremaster arterioles in RhoG +/+ and RhoG -/- mice was measured using microvascular thrombosis model with light/dye-induced injury. 5 mice of each genotype were used, and statistical analysis revealed a significant difference between the 2 genotypes of mice (*, P < .01). (B) Representative images of cremaster arterioles were taken from RhoG +/+ and RhoG -/- mice 30 min after the injury. As seen with the outline (arrows) of the thrombus formed, thrombus formation was inhibited in RhoG -/- mice.Figure 3. (A): Time required for occlusion of cremaster arterioles in RhoG +/+ and RhoG -/- mice was measured using microvascular thrombosis model with light/dye-induced injury. 5 mice of each genotype were used, and statistical analysis revealed a significant difference between the 2 genotypes of mice (*, P < .01). (B) Representative images of cremaster arterioles were taken from RhoG +/+ and RhoG -/- mice 30 min after the injury. As seen with the outline (arrows) of the thrombus formed, thrombus formation was inhibited in RhoG -/- mice. In conclusion, we show for the first time that RhoG is expressed and activated in platelets, plays an important role in GPVI/FcRγ-mediated platelet activation and is critical for thrombus formation in vivo. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document