scholarly journals Therapeutic Crispr/Cas9 Genome Editing for Treating Sickle Cell Disease

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4703-4703 ◽  
Author(s):  
So Hyun Park ◽  
Ciaran M Lee ◽  
Harshavardhan Deshmukh ◽  
Gang Bao

Abstract Introduction Sickle cell disease (SCD) is one of the most common monogenic disorders, affecting millions worldwide. SCD is caused by a point mutation in the β-globin gene (HBB). A single nucleotide substitution from A to T in the codon for the sixth amino acid in the β-globin protein converts a glutamic acid to a valine that leads to the production of sickle hemoglobin (HbS), which impairs the function of the red blood cells (RBCs). Allogeneic hematopoietic stem cell transplantation (HSCT) is the only available cure, but it is feasible for only a small subpopulation (<15%) of patients and may be associated with a high risk. Here, we show that targeted genome editing can potentially provide a permanent cure for SCD by correcting the sickle mutation in clinically relevant hematopoietic stem and progenitor cells (HSPCs) for autologous transplantation. Methods For proof-of-concept, we designed CRISPR/Cas9 systems and donor templates to introduce the sickle mutation into wild-type (WT) HBB of mobilized peripheral blood CD34+ cells. To assess genome-editing outcomes mediated by CRISPR/Cas9 systems, we developed a novel digital droplet PCR (ddPCR) assay that can quantify the rates of non-homologous end joining (NHEJ) and homology directed repair (HDR) events simultaneously following the generation of DNA double strand breaks. The assay enables rapid and accurate quantification of gene modifications in HSPCs by CRISPR/Cas9 genome-editing. Specifically, Streptococcus pyogenes (Spy) Cas9 proteins, guide RNAs (gRNA), and single-stranded DNA (ssDNA) donor templates were delivered into CD34+ cells by nucleofection with optimized conditions. Different gRNAs targeting HBB near the SCD mutation site were tested, and the optimal gRNA was chosen based on high on-target activity and proximity to the mutation site. The optimal DNA donor design and concentration were determined based on the frequency of HDR events and viability/growth rate of edited cells. Treated samples and untreated controls were assayed as both single cell clones and in bulk culture. In 2-phase liquid culture, genome editing frequencies at both DNA and mRNA levels were quantified by ddPCR to confirm persistence of edited cells in the heterozygous population over time. The expression of globins and other erythroid markers were monitored using flow cytometry and real time PCR to determine if genome editing had any effect on the kinetics of erythropoiesis. Colony formation assays were used to determine the number and type of colonies following induction of differentiation. Colony ddPCR was performed to determine the genotype of edited cells. Wright/Giemsa stain was used to confirm terminal maturation of erythrocytes into enucleated RBC. Native polyacrylamide gel electrophoresis (PAGE) and high performance liquid chromatography (HPLC) were used to confirm translation of edited β-globin protein and formation of HbS. Results and Discussion We found that the efficiency of site-specific gene correction could be substantially improved by optimizing the CRISPR/Cas9 systems for genome editing. For example, with optimization, we achieved ~30% HDR rates in CD34+ cells with >80% cell viability. The HDR-modified alleles persisted in the population over the course of differentiation, and the edited CD34+ cells retained differentiation potential. Genotyping of individual erythroid colonies confirmed that up to 35% of colonies are either homozygous or heterozygous for HDR alleles. Following differentiation, treated cells express modified HBB mRNA and HbS. In addition, the off-target activity of the HBB-specific gRNAs was determined using both bioinformatics tools and unbiased genome-wide mapping techniques. Ongoing work includes the validation of gene correction in SCD patient derived HSPCs, characterization of modified cells in vitro and in vivo to assess the therapeutic potential, and analysis of long-term genotoxicity. Conclusions Based on the proof-of-concept study, we demonstrate that using the optimized CRISPR/Cas9 system and donor template, an HDR rate of ~30% can be achieved in CD34+ cells. The gene corrected cells have the potential to differentiate into erythroid cells that permanently produce WT β-globin. Our findings provide promising evidence for clinical translation of the HSPCs genome correction strategy in treating SCD patients, as well as correcting gene defects underlying other inherited single-gene disorders. Disclosures No relevant conflicts of interest to declare.

2016 ◽  
Vol 113 (38) ◽  
pp. 10661-10665 ◽  
Author(s):  
Lin Ye ◽  
Jiaming Wang ◽  
Yuting Tan ◽  
Ashley I. Beyer ◽  
Fei Xie ◽  
...  

Hereditary persistence of fetal hemoglobin (HPFH) is a condition in some individuals who have a high level of fetal hemoglobin throughout life. Individuals with compound heterozygous β-thalassemia or sickle cell disease (SCD) and HPFH have milder clinical manifestations. Using RNA-guided clustered regularly interspaced short palindromic repeats-associated Cas9 (CRISPR-Cas9) genome-editing technology, we deleted, in normal hematopoietic stem and progenitor cells (HSPCs), 13 kb of the β-globin locus to mimic the naturally occurring Sicilian HPFH mutation. The efficiency of targeting deletion reached 31% in cells with the delivery of both upstream and downstream breakpoint guide RNA (gRNA)-guided Staphylococcus aureus Cas9 nuclease (SaCas9). The erythroid colonies differentiated from HSPCs with HPFH deletion showed significantly higher γ-globin gene expression compared with the colonies without deletion. By T7 endonuclease 1 assay, we did not detect any off-target effects in the colonies with deletion. We propose that this strategy of using nonhomologous end joining (NHEJ) to modify the genome may provide an efficient approach toward the development of a safe autologous transplantation for patients with homozygous β-thalassemia and SCD.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3119-3119
Author(s):  
Fabrizia Urbinati ◽  
Zulema Romero Garcia ◽  
Sabine Geiger ◽  
Rafael Ruiz de Assin ◽  
Gabriela Kuftinec ◽  
...  

Abstract Abstract 3119 BACKGROUND: Sickle cell disease (SCD) affects approximately 80, 000 Americans, and causes significant neurologic, pulmonary, and renal injury, as well as severe acute and chronic pain that adversely impacts quality of life. Because SCD results from abnormalities in red blood cells, which in turn are produced from adult hematopoietic stem cells, hematopoietic stem cell transplant (HSCT) from a healthy (allogeneic) donor can benefit patients with SCD, by providing a source for life-long production of normal red blood cells. However, allogeneic HSCT is limited by the availability of well-matched donors and by immunological complications of graft rejection and graft-versus-host disease. Thus, despite major improvements in clinical care, SCD continues to cause significant morbidity and early mortality. HYPOTHESIS: We hypothesize that autologous stem cell gene therapy for SCD has the potential to treat this illness without the need for immune suppression of current allogeneic HSCT approaches. Previous studies have demonstrated that addition of a β-globin gene, modified to have the anti-sickling properties of fetal (γ-) globin (βAS3), to bone marrow (BM) stem cells in murine models of SCD normalizes RBC physiology and prevents the manifestations of sickle cell disease (Levassuer Blood 102 :4312–9, 2003). The present work seeks to provide pre-clinical evidence of efficacy for SCD gene therapy using human BM CD34+ cells modified with the bAS3 lentiviral (LV) vector. RESULTS: The βAS3 globin expression cassette was inserted into the pCCL LV vector backbone to confer tat-independence for packaging. The FB (FII/BEAD-A) composite enhancer-blocking insulator was inserted into the 3' LTR (Ramezani, Stem Cells 26 :32–766, 2008). Assessments were performed transducing human BM CD34+ cells from healthy or SCD donors with βAS3 LV vectors. Efficient (1–3 vector copies/cell) and stable gene transmission were determined by qPCR and Southern Blot. CFU assays demonstrated that βAS3 gene modified SCD CD34+ cells are fully capable of maintaining their hematopoietic potential. To demonstrate the effectiveness of the erythroid-specific bAS3 gene in the context of human HSPC (Hematopoietic Stem and Progenitor Cells), we optimized an in vitro model of erythroid differentiation of huBM CD34+ cells. We successfully obtained an expansion up to 700 fold with >80% fully mature enucleated RBC derived from CD34+ cells obtained from healthy or SCD BM donors. We then assessed the expression of the βAS3 globin gene by isoelectric focusing: an average of 18% HbAS3 over the total globin present (HbS, HbA2) per Vector Copy Number (VCN) was detected in RBC derived from SCD BM CD34+. A qRT-PCR assay able to discriminate HbAS3 vs. HbA RNA, was also established, confirming the quantitative expression results obtained by isoelectric focusing. Finally, we show morphologic correction of in vitro differentiated RBC obtained from SCD BM CD34+ cells after βAS3 LV transduction; upon induction of deoxygenation, cells derived from SCD patients showed the typical sickle shape whereas significantly reduced numbers were detected in βAS3 gene modified cells. Studies to investigate risks of insertional oncogenesis from gene modification of CD34+ cells by βAS3 LV vectors are ongoing as are in vivo studies to demonstrate the efficacy of βAS3 LV vector in the NSG mouse model. CONCLUSIONS: This work provides initial evidence for the efficacy of the modification of human SCD BM CD34+ cells with βAS3 LV vector for gene therapy of sickle cell disease. This work was supported by the California Institute for Regenerative Medicine Disease Team Award (DR1-01452). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2597-2604 ◽  
Author(s):  
Megan D. Hoban ◽  
Gregory J. Cost ◽  
Matthew C. Mendel ◽  
Zulema Romero ◽  
Michael L. Kaufman ◽  
...  

Key Points Delivery of ZFNs and donor templates results in high levels of gene correction in human CD34+ cells from multiple sources, including SCD BM. Modified CD34+ cells are capable of engrafting immunocompromised NSG mice and produce cells from multiple lineages.


2021 ◽  
Vol 13 (598) ◽  
pp. eabf2444
Author(s):  
Annalisa Lattanzi ◽  
Joab Camarena ◽  
Premanjali Lahiri ◽  
Helen Segal ◽  
Waracharee Srifa ◽  
...  

Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)–mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2192-2192
Author(s):  
So Hyun Park ◽  
Ciaran M Lee ◽  
Daniel P. Dever ◽  
Timothy H Davis ◽  
Joab Camarena ◽  
...  

Abstract Sickle cell disease (SCD) is an inherited blood disorder associated with a debilitating chronic illness. SCD is caused by a point mutation in the β-globin gene (HBB). A single nucleotide substitution converts glutamic acid to a valine that leads to the production of sickle hemoglobin (HbS), which impairs the function of red blood cells. Here we show that delivery of Streptococcus pyogenes (Sp) Cas9 protein and CRISPR guide RNA as a ribonucleoprotein complex (RNP) together with a short single-stranded DNA donor (ssODN) template into CD34+ hematopoietic stem and progenitor cells (HSPCs) from SCD patients' bone marrow (BM) was able to correct the sickling HBB mutation, with up to 33% homology directed repair (HDR) without selection. Further, CRISPR/Cas9 cutting of HBB in SCD HSPCs induced gene conversion between the HBB sequences in the vicinity of the target locus and the homologous region in δ-globin gene (HBD), with up to 4.4% additional gene correction mediated by the HBD conversion in cells with Cas9 cutting only. The erythrocytes derived from gene-edited cells showed a marked reduction of the HbS level, increased expression of normal adult hemoglobin (HbA), and a complete loss of cell sickling, demonstrating the potential in curing SCD. We performed extensive off-target analysis of gene-edited SCD HSPCs using the in-silico prediction tool COSMID and unbiased, genome-wide assay Guide-Seq, revealing a gross intrachromosomal rearrangement event between the on- and off-target Cas9 cutting sites. We used a droplet digital PCR assay to quantify deletion and inversion events from Day 2 to Day 12 after RNP delivery, and found that large chromosomal deletion decreased from 1.8% to 0.2%, while chromosomal inversion maintained at 3.3%. We demonstrated that the use of high-fidelity SpCas9 (HiFi Cas9 by IDT) significantly reduced off-target effects and completely eliminated the intrachromosome rearrangement events, while maintaining the same level of on-target gene editing, leading to high-efficiency gene correction with increased specificity. In order to determine if gene-corrected SCD HSPCs retain the ability to engraft, CD34+ cells from the BM of SCD patients were treated with Cas9/gRNA RNP and ssODN donor for HBB gene correction, cryopreserved at Day 2 post genome editing, then intravenously transplanted into NSG mice shortly after thawing. These mice were euthanized at Week 16 after transplantation, and the BM was harvested to determine the engraftment potential. An average of 7.5 ±5.4% of cells were double positive for HLA and hCD45 in mice injected with gene-edited CD34+ cells, compared to 16.8 ±9.3% with control CD34+ cells, indicating a good level of engraftment of gene-corrected SCD HSPCs. A higher fraction of human cells were positive for CD19 (66 ±28%), demonstrating lymphoid lineage bias. DNA was extracted from unsorted cells, CD19 or CD33 sorted cells for gene-editing analysis; the HBB editing rates were respectively 29.8% HDR, 2.4% HBD conversion, and 42.8% non-homologous end joining (NHEJ) pretransplantation, and editing rates at Week 16 posttransplantation were respectively 8.8 ±12% HDR, 1.8 ±1.7% HBD conversion, and 24.5 ±12% NHEJ. The highly variable editing rate and indel diversity in gene-edited cells at Week 16 in all four transplanted mice suggest clonal dominance of a limited number of HSPCs after transplantation. Taken together, our results demonstrate highly efficient gene and phenotype correction of the sickling mutation in BM HSPCs from SCD patients mediated by HDR and HBD conversion, and the ability of gene-edited SCD HSPCs to engraft in vivo. We also demonstrate the importance of genome-wide analysis for off-target analysis and the use of HiFi Cas9. Our results provide further evidence for the potential of moving genome editing-based SCD treatment into clinical practice. Acknowledgments: This work was supported by the Cancer Prevention and Research Institute of Texas grants RR140081 and RP170721 (to G. B.), and the National Heart, Lung and Blood Institute of NIH (1K08DK110448 to V.S.) Disclosures Porteus: CRISPR Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4827-4827
Author(s):  
Caterina P. Minniti ◽  
Seda S. Tolu ◽  
Kai Wang ◽  
Zi Yan ◽  
Andrew Crouch ◽  
...  

Background Hydroxyurea (HU) is used to treat sickle cell disease (SCD) in part because of its ability to increase hemoglobin F (HbF) concentration, but the mechanism by which HU induces HbF, and the low or lack of HbF response in a fraction of the patient remains unclear. HU causes myelo-suppression and induces stress hematopoiesis, which is associated with increase production of HbF. Earlier research has shown that HbF levels in SCD patients are inversely correlated with reticulocytes, which can be secondary to: 1) HbF-induced decreased hemolysis with less needs for red blood cell (RBC) production, and 2) Myelo-suppression. It has also been shown that the number of CD34+ cells is generally lower in HU treated patients, but the overall response of the hematopoietic system in relationship to HbF has not been characterized. Here, we prospectively isolated hematopoietic stem and progenitor cells (HSPCs) from HU-treated SCD patients and characterize their hematopoietic and HbF responses. Methods Peripheral blood (PB) was collected from 19 HbSS who had been HU for >3 years and from 12 healthy controls. Frozen mono-nuclear cells were analyzed by flow cytometry using CD49f, 90 45Ra, 123, 235a, 38, 34, 33 and lineage antibodies. The number of 49f+ long-term Hematopoietic Stem Cells (LT-HSC), Multipotent Progenitors (MPPs), Common Myeloid Progenitors (CMPs), Megakaryocyte-Erythroid Progenitors (MEPs), and Granulocyte-Monocyte Progenitors (GMPs) per uL of blood or per CD34+ cells was then quantified. Results The percentages of reticulocytes per uL of blood were found to correlate positively with the concentration per uL of blood of all stem and progenitor cell populations tested (CD34 (R2 = 0.6583), LT-HSC (R2 = 0.3532), MPP (R2 = 0.2603), CMP (R2 = 0.5889), MEP (R2 = 0.2411), and GMP (R2 = 0.6911)). Statistically significant (p<0.05) inverse correlations were also observed between HbF levels and the number of CD34+/uL ( R2 = 0.2931), and the number of CMP/uL (R2 = 0.3732). Normalization of the data to the number of circulating CD34+ cells revealed that there was a strong inverse correlation between HbF levels and the percentage of circulating CMPs (R2 = 0.5424), and importantly, that this correlation was specific to the CMP population since Hb F did not correlates with any of the other HSPC populations analyzed . Analysis of the PB of 12 healthy individuals revealed that, as in SCD patients, the percentage of CMPs varied between < 10% and >60% of the total circulating CD34+ cells. Further analysis revealed that the CMP percentages in both SCD and healthy controls appeared characteristics of each individual tested since the measurements were remarkably correlated (R2 >0.7) when they were repeated on blood samples collected at intervals of two-weeks or one-year. Discussion The positive correlation between the reticulocyte and HSPC populations that we observed was previously unreported and suggests that, in first approximation, the reticulocytes could serve as a proxy for the levels of circulating HSPCs which could help assess the degree of bone marrow suppression in compliant non-responding HU-treated patients. We identified an inverse correlation between percentages of HbF and circulating CMPs in HU-treated SCD patients that is specific to these progenitors. The specificity of the correlation suggests that the major mechanism for the correlation is unlikely to be differential mobilization of CMPs to the PB since inducing mobilization generally affect all HSPCs. A depletion of the CMPs in the bone marrow of high Hb F responders is therefore a more likely mechanism. A possible mechanism for the correlation is that HU acts directly on CMPs by accelerating their differentiation leading to the relative depletion of these progenitors in high F individuals, and initiating the reprogramming of gene expression that ultimately results in high level of gamma-globin expression. Alternatively, the similar range of variability in the percentage of CMPs in HU-treated SCD patients and in healthy individuals never exposed to HU, and the observation that the percentage of circulating CMP seem to be an intrinsic characteristic of each individual suggest that the percentage of circulating CMPs might be a genetically determined marker associated with the ability to produce HbF in response to HU therapy, rather than being a consequence of the treatment. Figure Disclosures Minniti: Doris Duke Foundation: Research Funding. Manwani:Novartis: Consultancy; Pfizer: Consultancy; GBT: Consultancy, Research Funding.


2020 ◽  
Author(s):  
Adam C. Wilkinson ◽  
Daniel P. Dever ◽  
Ron Baik ◽  
Joab Camarena ◽  
Ian Hsu ◽  
...  

AbstractCRISPR/Cas9-mediated beta-globin (HBB) gene correction of Sickle Cell Disease (SCD) patient-derived hematopoietic stem cells (HSCs) in combination with autologous transplantation represents a novel paradigm in gene therapy. Although several Cas9-based HBB-correction approaches have been proposed, functional correction of in vivo erythropoiesis has not been investigated. Here, we used a humanized globin-cluster SCD mouse model to study Cas9-AAV6-mediated HBB-correction in functional HSCs within the context of autologous transplantation. We discover that long-term multipotent HSCs can be gene corrected ex vivo and stable hemoglobin-A production can be achieved in vivo from HBB-corrected HSCs following autologous transplantation. We observed a direct correlation between increased HBB-corrected myeloid chimerism and normalized in vivo RBC features, but even low levels of chimerism resulted in robust hemoglobin-A levels. Moreover, this study offers a platform for gene editing of mouse HSCs for both basic and translational research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adam C. Wilkinson ◽  
Daniel P. Dever ◽  
Ron Baik ◽  
Joab Camarena ◽  
Ian Hsu ◽  
...  

AbstractCRISPR/Cas9-mediated beta-globin (HBB) gene correction of sickle cell disease (SCD) patient-derived hematopoietic stem cells (HSCs) in combination with autologous transplantation represents a recent paradigm in gene therapy. Although several Cas9-based HBB-correction approaches have been proposed, functional correction of in vivo erythropoiesis has not been investigated previously. Here, we use a humanized globin-cluster SCD mouse model to study Cas9-AAV6-mediated HBB-correction in functional HSCs within the context of autologous transplantation. We discover that long-term multipotent HSCs can be gene corrected ex vivo and stable hemoglobin-A production can be achieved in vivo from HBB-corrected HSCs following autologous transplantation. We observe a direct correlation between increased HBB-corrected myeloid chimerism and normalized in vivo red blood cell (RBC) features, but even low levels of chimerism resulted in robust hemoglobin-A levels. Moreover, this study offers a platform for gene editing of mouse HSCs for both basic and translational research.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2052-2052
Author(s):  
Kismet M Baldwin ◽  
Fabrizia Urbinati ◽  
Zulema Romero-Garcia ◽  
Donald B. Kohn

Abstract Abstract 2052 Background: Sickle cell disease (SCD) is a multisystem disease, associated with severe episodes of acute illness and progressive organ damage. Currently, the only curative treatment is allogeneic hematopoietic stem cell transplant (HSCT); however, this is limited by availability of HLA compatible donors and by immunological complications of graft rejection or graft-versus-host disease. Autologous stem cell gene therapy for SCD has the potential to treat this illness without the immune suppression needed for current allogeneic HSCT approaches. Previous studies have demonstrated that addition of a β-globin gene, modified to have the anti-sickling properties of fetal (γ-) globin (βAS3), to bone marrow (BM) stem cells in murine models of SCD normalizes RBC physiology and prevents the manifestations of sickle cell disease (Levasseuer Blood 102:4312–9, 2003). Initial evidence for the efficacy of the modification of human SCD BM CD34+ cells with the βAS3lentiviral (LV) vector for gene therapy of sickle cell disease has been demonstrated in our lab. However, this complex lentiviral vector is produced at a sub-optimal titer and large production batches would be needed to supply clinical trials. Hypothesis: Although, it has been proven that the βAS3 gene can be transduced into CD34+ hematopoietic stem/progenitor cells (HSPC), the transduction efficiency is still not optimal. The CD34+ cell population includes rare long-lived stem cells but also more abundant progenitors, which would be short-lived after transplant. We hypothesize that isolating the more primitive HSPC population (CD34+/CD38− cells approximately 1% of all CD34+ cells) and transducing them with the βAS3 lentiviral vector will increase transduction efficiency and greatly reduce vector needs. Methods: CD34+/CD38− cells were isolated from cord blood (CB) CD34+ cells obtained from healthy donors by fluorescence activated cell sorting (FACS) and transduced with the CCL.βAS3.FB LV vector. After 14 days in culture, vector copy number (VCN) was determined by qPCR. Isolation of a more primitive cell was confirmed via long term culture (LTC) assay for 90 days. At 2–3 weeks intervals, non-adherent cell number was obtained, VCN was analyzed and CFU assays were performed to assess their capability to fully maintain their hematopoietic potential after transduction. Results: CD34+/CD38− cells were effectively isolated using FACS (n=7; 6,329–33,742 cells; 34–99% theoretical yield). The isolated CD34+/CD38- cells were able to generate progeny over an extended period of LTC compared to the CD34+ cells whose cell expansion declined ∼60 days in culture. CFU assays demonstrated that βAS3 gene-modified CB CD34+/CD38- cells were fully capable of maintaining their hematopoietic potential. The isolated CD34+/CD38- cells required 3–40 fold less vector for transduction compared to an equivalent number of these cells contained within the larger, non-fractionated CD34+ preparations. Transduction of CD34+/CD38- cells measured at day 14, by qPCR, was improved relative to CD34+ cells, mean VCN 2.5, +/− SEM 0.33 (range 2–3.5) vs. VCN 1.3, +/− 0.40 (range 0.5–2), respectively (p=0.03). In LTC, VCN remained higher over time in the CD34+/CD38- cells compared to the CD34+ cells, mean VCN 2.0, +/− SEM 0.13 (range 1.6–2.7) vs. VCN 0.5, +/− 0.09 (range 0.2–0.9) respectively. In vivo studies are ongoing to investigate the transduction efficiency of stem/progenitor cells engrafting from CD34+ and CD34+/CD38- cells transplanted in the NSG mouse model. Immunomagnetic isolation of CD34+/CD38- cells using columns is underway in anticipation of potential use in future clinical trials. Further investigations into the mechanisms for increased transduction in the CD34+/CD38- cells are ongoing. Conclusions: This work provides initial evidence for the beneficial effects from isolating human CB CD34+/CD38− cells to improve transduction with the βAS3LV vector for gene therapy of sickle cell disease. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document