Targeting Pre-Leukemic Stem Cells in T-Acute Lymphoblastic Leukemia

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 527-527
Author(s):  
Bastien Gerby ◽  
Diogo F.T Veiga ◽  
Jana Krosl ◽  
Julianne Ouellette ◽  
André Haman ◽  
...  

Abstract Current chemotherapy of pediatric T cell acute lymphoblastic leukemia (T-ALL) efficiently reduces the tumor mass with, however, undesirable long term consequences and remains ineffective in adolescent and adult T-ALL. Furthermore, relapse can be caused by pre-leukemic stem cells (pre-LSCs) that were spared by current protocols and evolved to malignancy. A distinctive characteristic of pre-LSCs is their critical dependence on interactions with the microenvironment for survival, which guided our strategy to target pre-LSCs using niche-based screening assays. Using transgenic mouse models that closely reproduce the human disease, we showed that the SCL/TAL1 and LMO1 oncogenic transcription factors establish a pre-leukemic state by reprogramming normal pro-T cells into aberrantly self-renewing pre-LSCs (Gerby et al. PloS Genetics, 2014). We now provide direct evidence that pre-LSCs are much less chemosensitive than leukemic blasts to current drugs, due to a distinctive lower proliferative state as assessed by real-time imaging in a competitive assay. We therefore designed a robust protocol for high-throughput screening (HTS) of compounds targeting primary pre-LSCs that are maintained on stromal cells engineered for optimal NOTCH1 activation to mimick the thymic microenvironement. The multiparametric readout takes into account the intrinsic complexity of primary cells to specifically monitor pre-LSCs. We screened a targeted library of 1904 compounds and identified UM0119979 that disrupts both cell autonomous and non-cell autonomous pathways: UM0119979 abrogates pre-LSC viability and self-renewal activity in vivo by specifically inhibiting the translation of MYC, a downstream effector of NOTCH1, and preventing SCL/TAL1 activity. In contrast, normal hematopoietic stem/progenitor cells remain functional. Moreover, in vivo administration of UM0119979 efficiently reduced the leukemia propagating activity of primary human T-ALL samples in xenografted mice. Finally, in addition to SCL-LMO-induced T-ALL, our results reveal a novel possibility of therapeutic intervention in MYC-dependent hematologic malignancies. In summary, our screening assay, built on the genetic dependencies of pre-LSCs, revealed their vulnerabilities to compounds that inhibit both the primary oncogenes and non-cell autonomous pathways triggered by the microenvironment. The results illustrate how recapitulating tissue-like properties of primary cells in high throughput screening is a promising avenue for innovation in cancer chemotherapy. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1860-1860
Author(s):  
John M. Perry ◽  
Anuradha Roy ◽  
Xiuling Lu ◽  
Xi C. He ◽  
Fang Tao ◽  
...  

Abstract Leukemia is often maintained by a relatively rare subset of tumor-initiating cells, which may be resistant to traditional chemotherapy. Targeting these leukemic stem cells is expected to eliminate or reduce acquired resistance to chemotherapy and disease recurrence, but this goal has been elusive. It's also not clear whether eliminating the 'root' of cancer is sufficient or whether targeting both 'root' and 'branch' (i.e. LSCs and their bulk progeny) is necessary. To test this, we established and characterized a mouse model with clearly defined populations of rare leukemic stem cells (LSCs), abundant leukemic blast cell progeny, and normal hematopoietic stem/progenitor cells (HSPCs). This was achieved by simultaneously activating the Wnt/β-catenin and PI3K/Akt signaling pathways in HSPCs to drive stem cell self-renewal-resulting in successive expansion of HSPCs, LSCs, and leukemic blasts. Functional analysis showed a 1,300-fold increase in leukemia-initiating activity of sorted LSCs compared to bulk blast cells or sorted HSPCs. Since Akt activates β-catenin by phosphorylation at serine 552 and thus represents a molecular link mediating the synergistic, self-renewal promoting activity of these pathways, we sought to specifically target pS552-β-catenin. Unexpectedly, high-throughput screening (HTS) and subsequent validation assays found that doxorubicin (DXR) inhibits pS552-β-catenin with minimal effects on total β-catenin. DXR exhibits the broadest spectrum of anti-cancer activity known and has been employed as a standard chemotherapeutic agent for decades, but severe side-effects limit its use. We found that while standard chemotherapeutic treatment reduced the bulk leukemic blast cells as expected, it also induced pS552-β-catenin uniquely in LSCs and stimulated LSC expansion. Using long-circulating nanoparticles (NanoDXR) to deliver very low, sustained doses of DXR, we repurposed DXR as a targeted therapy for pS552-β-catenin inhibition rather than a broadly cytotoxic agent. In vivo, this treatment reduced pS552-β-catenin levels in LSCs, prevented LSC expansion, essentially eliminated LSC tumorigenic activity in transplant recipients, and was accompanied by recovery of HSPCs and substantially increased median survival from 44.5 days to 139 days. Our data reveals a dynamic relationship between rare LSCs and bulk leukemic blast cells in their response to cytotoxic chemotherapy and show how oncogenic self-renewal in chemoresistant LSCs can be targeted while sparing normal HSPCs. In distinguishing the unique properties of LSCs and their progeny, we find that both populations must be differentially targeted at both the 'root' and 'branch' of leukemia and can be effectively reduced or eliminated while allowing for recovery of normal HSPCs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 887-887 ◽  
Author(s):  
Hangyu Yi ◽  
Jianlong Wang ◽  
Maria Kavallaris ◽  
Jenny Yingzi Wang

Abstract Although the clinical importance of aberrant Wnt/β-catenin signaling has been recognized in various cancers, including MLL-rearranged acute myeloid leukemia (MLL AML), its key tractable pathway components have not yet been discovered in leukemic stem cells (LSC). Our studies have identified an Rspo3/Wnt3a-Lgr4-Gnaq pathway, which significantly potentiates β-catenin signaling in MLL LSC. Genetic and pharmacological targeting of this pathway impairs LSC self-renewal and survival, inhibiting MLL-AF9-induced leukemia progression in vivo. Gene expression analysis of AML patient samples (Nucleic Acids Res, 41:D1034-9, 2013) revealed an approximately 3-fold increase (p=0.00002) in expression of leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) in leukemic cells from patients with MLL AML compared to normal human hematopoietic stem cells (HSC). As recent studies have highlighted a critical link between R-spondin (Rspo)/Lgr4 and Wnt/β-catenin signaling pathways, we hypothesized that up-regulation of Lgr4 is associated with aberrant activation of β-catenin signaling in MLL LSC. We have previously demonstrated that β-catenin is highly expressed in HSC transformed by MLL-AF9 and is lower in HSC transduced with leukemic oncogenes such as Hoxa9/Meis1, while increased β-catenin expression is correlated with a poor survival rate in mice. In this study, western blots confirmed high levels of Lgr4 expression in HSC expressing MLL-AF9 compared to Hoxa9/Meis1. ShRNA-mediated stable knockdown of Lgr4 markedly reduced colony formation of HSC expressing MLL-AF9 by 55-65% (p=0.0001) and significantly prolonged mouse survival (p=0.0019) through its inhibition of endogenous β-catenin expression. This deficient phenotype could be rescued by expression of a constitutively active form of β-catenin. Furthermore, ectopic expression of Lgr4 alone was not sufficient for triggering the leukemic transformation of HSC but conferred a growth advantage in vivo to HSC expressing Hoxa9/Meis1 and significantly accelerated the onset of Hoxa9/Meis1-induced AML in mice (p=0.0011). These data support an oncogenic role of Lgr4 in promoting tumor formation through activation of β-catenin signaling. As Lgr4 has recently been identified as a receptor for the Rspo family of secreted proteins (Rspo1–Rspo4), we sought to determine if Rspo is a positive regulator of β-catenin signaling in MLL AML. We found that only the combination of Rspo3 and Wnt3a potently enhanced β-catenin signaling in HSC expressing MLL-AF9 whereas Rspo and Wnt3a alone or the combination of Wnt3a with other Rspo had no effects on β-catenin activity. Depletion of Lgr4 completely abolished Rspo3/Wnt3a-induced β-catenin signaling, suggesting Rspo3/Wnt3a potentiating β-catenin signaling through Lgr4. Next, we assessed if Lgr4 signals through G protein pathways. By testing G protein alpha inhibitors in MLL LSC, we demonstrated that G protein alpha-q (Gnaq) was required for maintenance of stem cell properties by chemical suppression of the Gnaq-activated β-catenin pathway with a Gnaq selective inhibitor, which exhibited a 3-fold decrease in colony formation (p=0.0001) and a 4-fold reduction in cell number (p=0.0009), and was sufficient to induce substantial cell differentiation and apoptosis. Treatment with Gnaq inhibitor abolished the effect of Lgr4 on β-catenin transactivation, implicating an Lgr4-Gnaq-β-catenin signaling pathway in MLL LSC. Microarray analysis of gene expression confirmed enrichment of genes related to cancer cell proliferation, migration and growth, as well as enrichment of Wnt target genes in LSC expressing Lgr4. Taken together, we report here an Rspo3/Wnt3a-Lgr4-Gnaq-β-catenin signaling circuit in MLL leukemogenesis. Interference with components of the circuit can block β-catenin signaling and perturb leukemia development. Thus, our findings provide potential therapeutic targets in treating LSC-based hematological malignancy driven by Wnt/β-catenin signaling. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3781-3781
Author(s):  
Philipp A Dietrich ◽  
Murray D Norris ◽  
Jenny Yingzi Wang

Abstract Inappropriate activation of Wnt/β-catenin signaling confers hematopoietic progenitors the property of self-renewal that promotes malignant transformation in MLL-rearranged acute myeloid leukemia (AML). However, it has been noted that activation of β-catenin is observed in tumors without clear mutations in the major components of the pathway or increase in Wnt signaling. This suggests that other developmental signaling pathways may be capable of inducing activation or downstream signaling of β-catenin. Recently, a number of G protein-coupled receptors (GPCRs) have been shown to activate β-catenin signaling to recruit the key downstream components of the canonical Wnt pathway in distinct cell types, including stem cells. GPCRs, the largest family of cell-surface molecules involved in signal transmission, have emerged as crucial players in tumor growth and metastasis, and represent one of the most important drug targets in pharmaceutical development. Given the close functional link with activation of β-catenin signaling, a GPCR signaling pathway may act as the upstream regulator of β-catenin signaling in the establishment of leukemic stem cells (LSC). In this study, our microarray analysis comparing genes differentially expressed between LSC and normal hematopoietic stem cells (HSC) identified GPR84, a proinflammatory GPCR, as a potential LSC-specific candidate target. An analysis of the comprehensive patient outcome database (Oncogenomics – maintained by the National Cancer Institute) showed that high levels of GPR84 were significantly associated with poor survival in patients with leukemia (P=0.0048), implying its potential clinical relevance in predicting disease prognosis. Western blot and flow cytometric analyses confirmed the microarray results and revealed a positive correlation between GPR84 and β-catenin expression. We previously demonstrated that β-catenin was highly expressed in HSC transformed by MLL-AF9 (HSC-MLLAF9) and had lower expression in HSC transduced with leukemic oncogenes Hoxa9/Meis1 (HSC-Hoxa9/Meis1), while increased β-catenin expression was correlated with a poor survival rate in vivo. Herein, our results showed that forced expression of GPR84 induced a robust upregulation of β-catenin in HSC-Hoxa9/Meis1. Conversely, shRNA-mediated ablation of GPR84 in HSC-MLLAF9 led to highly significant downregulation of both GPR84 (P=0.0003) and β-catenin (P=0.0008). Further in vitro functional studies showed that GPR84 knockdown significantly reduced HSC-MLL-AF9 colony forming units (P=0.0006), and induced a marked reduction of cells in S-phase (P=0.0017). This deficient phenotype could be rescued by expression of a constitutively active form of β-catenin. Importantly, subsequent in vivo survival studies using leukemia transplantation mouse models showed that GPR84 knockdown significantly reduced LSC frequency and severely impaired maintenance (P<0.0001; 11 mice per cohort) of HSC-MLL-AF9 induced leukemia, a highly aggressive and drug-resistant subtype of AML. The defect in disease phenotype resulted from inhibited expression of both GPR84 and β-catenin. Furthermore, forced overexpression of GPR84 alone was not sufficient for leukemic transformation of HSC but conferred a growth advantage in vivo to HSC-Hoxa9/Meis1 cells and significantly accelerated the onset of Hoxa9/Meis1-induced AML (P=0.0039), establishing a completely malignant phenotype similar to HSC-MLL-AF9 in vivo (P=0.9986). These data support an oncogenic role of GPR84 in MLL-AF9-induced leukemogenesis. In conclusion, our studies have identified a novel β-catenin regulator that contributes to leukemia maintenance by sustaining aberrant activation of a stem cell self-renewal pathway in LSC, and drugs targeting GPR84 may represent a novel and promising strategy for improving the therapy and outcome of AML patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 57-57
Author(s):  
Vincenzo Giambra ◽  
Catherine E Jenkins ◽  
Sonya H Lam ◽  
Catherine Hoofd ◽  
Miriam Belmonte ◽  
...  

Abstract Prior work has shown that NOTCH1 is a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL) with activating NOTCH1 mutations occurring in over 50% of cases (Weng et al, Science 2004) and loss-of-function mutations in its negative regulator FBXW7 occurring in 8-15% of cases (O’Neil et al, J Exp Med 2007; Thompson et al, J Exp Med 2007). Subsequent work has shown that continued Notch signaling is required for maintenance of T-ALL leukemia stem cells (Armstrong et al, Blood 2009; Tatarek et al, Blood 2011; Giambra et al, Nat Med 2012). Several lines of evidence have substantiated genetic interactions between the Notch and Wnt signaling pathways in various contexts, and Wnt signaling has been shown to play important roles in hematopoietic stem cell biology and also in hematopoietic cancers such as acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Luis et al, Leukemia 2012). To address what role if any Wnt signaling may play in T-ALL, we generated primary murine leukemias by viral transduction of bone marrow progenitors with activated NOTCH1, then delivered a fluorescent Wnt reporter construct (7TGP; Fuerer & Nusse, PLoS ONE 2010) by lentiviral transduction, and retransplanted the leukemias to interrogate Wnt signaling activity in vivo. We report here that active Wnt signaling is restricted to minor subpopulations within bulk T-ALL tumors, and that these Wnt-active subsets are highly enriched for leukemia-initiating cell (LIC) activity. Moreover, using Ctnnb1loxP/loxP animals we show that inducible Cre-mediated deletion of β-catenin or enforced expression of a dominant-negative TCF construct severely compromises LIC activity. We also show that β-catenin levels are upregulated by hypoxia through Hif1a stabilization, and that deletion of Hif1a also severely compromises LIC activity. Interestingly, Wnt-active subsets are distributed diffusely throughout the marrow interstitial space suggesting that tumor infiltration induces formation of local hypoxic niches as opposed to taking up residence in pre-existing anatomic compartments with low oxygen tensions. Taken together, these results suggest a model in which hypoxic niches in vivo facilitate Hif1a-dependent accumulation of β-catenin which drives Wnt signaling and self-renewal of leukemia stem cells. Finally, we show using patient-derived xenografts that antagonism of Hif1a or Wnt signaling also compromises human LIC activity, suggesting that pharmacologic targeting of these pathways could have therapeutic application in patients with T-ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4807-4807
Author(s):  
Mee Jeong Lee ◽  
Chan-Jeoung Park ◽  
Chan-Hee Yoon ◽  
Seongsoo Jang ◽  
Hyun-Sook Chi ◽  
...  

Abstract Abstract 4807 Background: Hematopoietic microenvironment consists of endosteal and vascular microenvironment. Osteopontin and osteonectic are released by osteoblast which is one of the factors regulating endosteal microenvironment. CXCL12 and CXCR4 are included in the factors regulating vascular microenvironment. Markers indicating the degree of differentiation of hematopoietic stem cells (HSC) include CD133, CD34 and CD117. This study is to evaluate the expression pattern of markers of hematopoietic microenvironment and HSC in childhood acute lymphoblastic leukemia (ALL) at diagnosis and the changes of them after chemotherapy. Methods: Between January, 2007 and December, 2009, 32 patients were diagnosed as ALL at Asan Medical Center. Bone marrow (BM) biopsies were obtained at diagnosis, after induction, consolidation, interim maintenance and delayed intensification. There were 22 male and 10 female patients with a mean age of 7.33 years. The diagnoses were a common cell ALL in 29. By immunohistochemistry, we analyzed the expressions of CD133, CD34, CD117, osteopontin, osteonectin, CXCL12, and CXCR4 in these BM biopsy specimens. Results: CD133+ cells decreased at diagnosis, and recovered after consolidation. The CD34+ cells decreased after induction, and then gradually increased again. CD117+ cells were fewer at diagnosis, but increased after chemotherapy. The expression of osteopontin was depressed at diagnosis, and gradually recovered. The expression of osteonectin was also suppressed at diagnosis and recovered after delayed intensification. CXCL12 was suppressed at diagnosis, recovered after consolidation and decreased after delayed intensification. CXCR4 was also suppressed at diagnosis, but increased after therapy. Conclusions: This study is the first report on the changes of hematopoietic microenvironment and HSC of childhood ALL at diagnosis and after chemotherapy, evaluated by immunohistochemistry. CD133+ cells, CD34+ cells and CD117+ cells increased in the reconstructive phase. CD34 can be a marker reflecting the BM recovery. Proliferation of osteoblasts and stromal cells were active after interim maintenance. The reconstruction of HSC and BM matrix increased after consolidation. The recovery of BM microenvironment was established after consolidation and interim maintenance chemotherapy. These findings may serve as basic data for future studies dealing with the hematopoietic microenvironment and HSC of childhood ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3885-3885
Author(s):  
Anne Pieta De Groot ◽  
Yoriko Saito ◽  
Eiryo Kawakami ◽  
Mari Hashimoto ◽  
Yuki Aoki ◽  
...  

Acute lymphoblastic leukemia (ALL) with rearrangement of the mixed-lineage leukemia (MLL) gene frequently affects infants and is associated with a poor prognosis. Standard treatment protocol for infant MLL-rearranged ALL (MLL-ALL) includes glucocorticoids (GCs). However, resistance to GCs remains a major problem. Therefore, it is important to find new treatment strategies that overcome GC resistance in MLL-ALL. To identify novel therapeutic targets to overcome GC resistance in MLL-ALL, we compared transcriptional profiles of normal cord blood CD34+CD38- hematopoietic stem and progenitor cells and GC-resistant infant MLL-ALL leukemia-initiating cells (LICs). We found enrichment of the Src family kinases (SFKs) and Fms-like tyrosine kinase 3 (FLT3) signaling pathways in the LICs. We hypothesized that activation of these kinases may contribute to GC resistance in MLL-ALL cells. Using our previously developed infant MLL-ALL patient-derived xenograft (PDX) models (Aoki et al., Blood, 2015), we recapitulated human GC-resistance in vivo, characterized by increased hCD45+ chimerism in the peripheral blood after treatment with dexamethasone (% peripheral blood human MLL-ALL at pre-treatment: 34.1±5.2% vs. post treatment 51.3±6.6%, n=26). In order to investigate if inhibition of SFKs and FLT3 can overcome GC-resistance, we treated the MLL-ALL PDX models with our previously developed FLT3-SFK multiple kinase inhibitor RK-20449 (Saito et al., Science Translational Medicine, 2013). Combination treatment with dexamethasone and RK-20449 successfully eliminated human MLL-ALL cells from the peripheral blood (dexamethasone alone: 47.2±7.2% vs. combination: 5.6±2.8% hCD45+ cells, p=6.91E-7), bone marrow (dexamethasone alone: 72.2±4.6% vs. combination: 19.5±4.8% hCD45+ cells, p=1.79E-10), and spleen (dexamethasone alone: 52.6±4.8% vs. combination: 11.7±3.5% hCD45+ cells, p=3.75E-9). In addition, combination treatment eliminated infiltrated MLL-ALL from kidney and liver of the MLL-ALL PDX models. Bcl-2 homology domain 3 (BH3) profiling demonstrated that MLL-ALL cells resistant to RK-20449 treatment were dependent on the anti-apoptotic Bcl-2 protein for their survival. Additional inhibition of Bcl-2 by ABT-199 led to complete elimination of MLL-ALL cells in vitro and in vivo in all MLL-ALL patient cases (Figure1). Taken together, in this study we demonstrated that inhibition of SFKs and FLT3 by RK-20449 overcomes GC-resistance in MLL-ALL. Further, we identified Bcl-2 dependence as a mechanism of treatment resistance in MLL-ALL. Therefore, we believe that the combined inhibition of kinase and anti-apoptotic pathways may lead to effective treatment options for highly resistant infant MLL-ALL. Aoki, et al., Identification of CD34+ and CD34- leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia. Blood, 2015: p. 967-980. Saito, Y., et al., A Pyrrolo-Pyrimidine Derivative Targets Human Primary AML Stem Cells in Vivo. Science Translational Medicine, 2013: p. 1-15. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Author(s):  
Philippe E. Mangeot ◽  
Valérie Risson ◽  
Floriane Fusil ◽  
Aline Marnef ◽  
Emilie Laurent ◽  
...  

AbstractProgrammable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Andrzej Eljaszewicz ◽  
Lukasz Bolkun ◽  
Kamil Grubczak ◽  
Malgorzata Rusak ◽  
Tomasz Wasiluk ◽  
...  

Background. Acute lymphoblastic leukemia (ALL) is a malignant disease of lymphoid progenitor cells. ALL chemotherapy is associated with numerous side effects including neutropenia that is routinely prevented by the administration of growth factors such as granulocyte colony-stimulating factor (G-CSF). To date, the effects of G-CSF treatment on the level of mobilization of different stem and progenitor cells in ALL patients subjected to clinically effective chemotherapy have not been fully elucidated. Therefore, in this study we aimed to assess the effect of administration of G-CSF to ALL patients on mobilization of other than hematopoietic stem cell (HSCs) subsets, namely, very small embryonic-like stem cells (VSELs), endothelial progenitor cells (EPCs), and different monocyte subsets. Methods. We used multicolor flow cytometry to quantitate numbers of CD34+ cells, hematopoietic stem cells (HSCs), VSELs, EPCs, and different monocyte subsets in the peripheral blood of ALL patients and normal age-matched blood donors. Results. We showed that ALL patients following chemotherapy, when compared to healthy donors, presented with significantly lower numbers of CD34+ cells, HSCs, VSELs, and CD14+ monocytes, but not EPCs. Moreover, we found that G-CSF administration induced effective mobilization of all the abovementioned progenitor and stem cell subsets with high regenerative and proangiogenic potential. Conclusion. These findings contribute to better understanding the beneficial clinical effect of G-CSF administration in ALL patients following successful chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document