scholarly journals Evidence for early recruitment of granulocyte precursors during high- dose methotrexate infusions in mice

Blood ◽  
1976 ◽  
Vol 48 (2) ◽  
pp. 301-307 ◽  
Author(s):  
HM Pinedo ◽  
BA Chabner ◽  
DS Zaharko ◽  
JM Bull

Abstract The effects of constant exposure to high concentrations of methotrexate in vivo on the committed stem cell (CFU-C) were studied by in vitro culture of mouse bone marrow. Bone marrow samples were obstained from animals receiving a continuous infusion, and were cultured in a methotrexate-free semisolid gel system. The effects of methotrexate infusion on the pluripotent stem cell population (CFU-S) were studied as well. Constant exposure to 10(-5) M methotrexate produced a rapid decrease in total nucleated cells per femur, reaching 35% of control at 12 hr and remaining at approximately this level throughout 48 hr of drug infusion. A decrease in the number of both CFU-C and CFU-S per femur was observed, which paralleled the drop in nucleated cells during the first 24 hr. However, in contrast to an additional drop in the number of CFU-S, an increase of CFU-C number per femur was observed from 24 to 48 hr. These data indicated a self-limited cell kill of nucleated bone marrow cells, and suggested recruitment of CFU-C from the CFU-S pool between 24 and 48 hr of infusion despite continued methotrexate infusion.

Blood ◽  
1976 ◽  
Vol 48 (2) ◽  
pp. 301-307
Author(s):  
HM Pinedo ◽  
BA Chabner ◽  
DS Zaharko ◽  
JM Bull

The effects of constant exposure to high concentrations of methotrexate in vivo on the committed stem cell (CFU-C) were studied by in vitro culture of mouse bone marrow. Bone marrow samples were obstained from animals receiving a continuous infusion, and were cultured in a methotrexate-free semisolid gel system. The effects of methotrexate infusion on the pluripotent stem cell population (CFU-S) were studied as well. Constant exposure to 10(-5) M methotrexate produced a rapid decrease in total nucleated cells per femur, reaching 35% of control at 12 hr and remaining at approximately this level throughout 48 hr of drug infusion. A decrease in the number of both CFU-C and CFU-S per femur was observed, which paralleled the drop in nucleated cells during the first 24 hr. However, in contrast to an additional drop in the number of CFU-S, an increase of CFU-C number per femur was observed from 24 to 48 hr. These data indicated a self-limited cell kill of nucleated bone marrow cells, and suggested recruitment of CFU-C from the CFU-S pool between 24 and 48 hr of infusion despite continued methotrexate infusion.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 684-684
Author(s):  
David G. Kent ◽  
Brad Dykstra ◽  
Connie J. Eaves

Abstract Hematopoietic stem cells (HSCs) are present in the marrow of adult mice at a frequency of 1/104, as measured by limiting dilution transplantation assays for individual cells that produce lymphoid (B and T) as well as myeloid (GM) cells for at least 4 months in irradiated recipients. HSCs thus defined can be reproducibly isolated in the CD45midlin−Rho−SP fraction of adult mouse bone marrow at a purity of >30%. In mice, mutations in c-kit, the receptor for Steel factor (SF) lead to substantial reductions in the adult HSC population. In vitro, SF has been identified as a potent regulator of HSC self-renewal divisions. High concentrations of SF in combination with IL-11 allow adult HSCs to divide with a net 2–4 fold expansion in HSC numbers after 10 days and low concentrations of SF result in loss of HSC activity. To investigate the cellular mechanisms underlying these different outcomes, we cultured 114 CD45midlin−Rho−SP adult mouse bone marrow cells in single cell cultures containing serum-free medium + 20 ng/ml IL-11 and either 300 or 10 ng/ml of SF. Each culture was then examined every 4–6 hr. The kinetics of division of these cells under both conditions was identical with completion of the 1st division occurring between 22–68 hr. During that time none of the input cells died (<1%). After 10 days of culture, during which time all input cells divided at least 5 times (>50 cells), the HSC content of pooled clones (as measured by in vivo transplantation assays) was found to be >10-fold higher in the clones generated under high vs. low SF conditions (p<0.05). To characterize the types of self-renewal divisions undertaken, 9 doublets generated under the high SF condition were harvested between 4 and 8 hr after they underwent their 1st division and then each of the daughters was injected into a separate irradiated mouse. Analysis of the 18 mice showed that for one of the input cells both daughters were HSCs (evidence of a symmetric self-renewal division) and for 3 more, only one of the 2 daughters was an HSC (evidence of an asymmetric self-renewal division). In contrast no daughter HSCs were identified when 6 doublets produced under the low SF condition were assayed. To determine whether the loss of HSC activity under low SF conditions was a pre- or post-mitotic event, additional in vivo HSC assays were performed on cells harvested from individual wells after 8, 16 and 96 hours of incubation. The results revealed no change in the proportion of wells with either low or high concentrations of SF that contained HSCs after 8 hr of incubation (10/36 positive mice injected with starting single cells and 5/17 (low SF) vs. 6/17 (high SF) positive mice injected with 8-hr single cells, respectively). However, a significant difference (p<0.01) was seen after 96 hr (5/35 vs. 2/43 positive mice, respectively) and, after only 16 hr, before a first mitosis was seen under either condition, a decline in HSCs was apparent under the low SF condition (4/15 vs. 1/15 positive mice injected with cells from the high vs. low SF condition). Together, these studies indicate that HSC exposure to different SF concentrations can rapidly and irreversibly alter the ability of HSCs to execute symmetric as well asymmetric self-renewal divisions in vitro.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1224-1224
Author(s):  
Jerry C. Cheng ◽  
Dejah Judelson ◽  
Kentaro Kinjo ◽  
Jenny Chang ◽  
Elliot Landaw ◽  
...  

Abstract The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, memory, and glucose metabolism. We previously demonstrated that CREB overexpression is associated with an increased risk of relapse in a small cohort of adult acute myeloid leukemia (AML) patients. Transgenic mice that overexpress CREB in myeloid cells develop myeloproliferative/myelodysplastic syndrome after one year. Bone marrow cells from these mice have increased self-renewal and proliferation. To study the expression of CREB in normal hematopoiesis, we performed quantitative real-time PCR in both mouse and human hematopoietic stem cells (HSCs). CREB expression was highest in the lineage negative population and was expressed in mouse HSCs, common myeloid progenitors, granulocyte/monocyte progenitors, megakaryocyte/erythroid progenitors, and in human CD34+38- cells. To understand the requirement of CREB in normal HSCs and myeloid leukemia cells, we inhibited CREB expression using RNA interference in vitro and in vivo. Bone marrow progenitor cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in CFU-GM but increased Gr-1/Mac-1+ cells compared to vector control infected cells (p<0.05). There were fewer terminally differentiated Mac-1+ cells in the CREB shRNA transduced cells (30%) compared to vector control (50%), suggesting that CREB is critical for both myeloid cell proliferation and differentiation. CREB downregulation also resulted in increased apoptosis of mouse bone marrow progenitor cells. Given our in vitro results, we transplanted sublethally irradiated mice with mouse bone marrow cells transduced with CREB or scrambled shRNA. At 5 weeks post-transplant, we observed increased Gr-1+/Mac-1+ cells in mice infused with CREB shRNA transduced bone marrow compared to controls. After 12 weeks post-transplant, there was no difference in hematopoietic reconstitution or in the percentage of cells expressing Gr-1+, Mac-1+, Gr-1/Mac-1+, B22-+, CD3+, Ter119+, or HSCs markers, suggesting that CREB is not required for HSC engraftment. To study the effects of CREB knockdown in myeloid leukemia cells, K562 and TF-1 cells were infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed for CREB expression and proliferation. Within 72 hours, cells transduced with CREB shRNA demonstrated decreased proliferation and survival with increased apoptosis. In cell cycle experiments, we observed increased numbers of cells in G1 and G2/M with CREB downregulation. Expression of cyclins A1 and D, which are known target genes of CREB, was statistically significantly decreased in TF-1 and K562 cells transduced with CREB shRNA lentivirus compared to controls. To study the in vivo effects of CREB knockdown on leukemic progression, we injected SCID mice with Ba/F3 cells expressing bcr-abl or bcr-abl with the T315I mutation and the luciferase reporter gene. Cells were transduced with either CREB or scrambled shRNA. Disease progression was monitored using bioluminescence imaging. The median survival of mice injected with CREB shRNA transduced Ba/F3 bcr-abl or bcr-abl with the T315I mutation was increased with CREB downregulation compared to controls (p<0.05). Our results demonstrate that CREB is a critical regulator of normal and neoplastic hematopoiesis both in vitro and in vivo.


2005 ◽  
Vol 24 (6) ◽  
pp. 427-434 ◽  
Author(s):  
Gunda Reddy ◽  
Gregory L. Erexson ◽  
Maria A. Cifone ◽  
Michael A. Major ◽  
Glenn J. Leach

Hexahydro-1,3,5-trinitro-1,3,5-triazine, a polynitramine compound, commonly known as RDX, has been used as an explosive in military munitions formulations since World War II. There is considerable data available regarding the toxicity and carcinogenicity of RDX. It has been classified as a possible carcinogen (U.S. Environmental Protection Agency, Integrated Risk Information System, 2005, www.epa.gov/IRIS/subst/0313.htm ). In order to better understand its gentoxic potential, the authors conducted the in vitro mouse lymphoma forward mutation and the in vivo mouse bone marrow micronucleus assays. Pure RDX (99.99%) at concentrations ranging from 3.93 to 500 μg/ml showed no cytotoxicity and no mutagenicity in forward mutations at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells, with and without metabolic activation. This finding was also confirmed by repeat assays under identical conditions. In addition, RDX did not induce micronuclei in mouse bone marrow cells when tested to the maximum tolerated dose of 250 mg/kg in male mice. These results show that RDX was not mutagenic in these in vitro and in vivo mammalian systems.


2009 ◽  
Vol 56 (2) ◽  
Author(s):  
Leszek Sliwiński ◽  
Joanna Folwarczna ◽  
Barbara Nowińska ◽  
Urszula Cegieła ◽  
Maria Pytlik ◽  
...  

Genistein, a major phytoestrogen of soy, is considered a potential drug for prevention and treatment of postmenopausal osteoporosis. The aim of the present study was to compare the effects of genistein, estradiol and raloxifene on the skeletal system in vivo and in vitro. Genistein (5 mg/kg), estradiol (0.1 mg/kg) or raloxifene hydrochloride (5 mg/kg) were administered daily by a stomach tube to mature ovariectomized Wistar rats for 4 weeks. Bone mass, mineral and calcium content, macrometric parameters and mechanical properties were examined. Also the effects of genistein, estradiol and raloxifene (10(-9)-10(-7) M) on the formation of osteoclasts from neonatal mouse bone marrow cells and the activity of osteoblasts isolated from neonatal mouse calvariae were compared. In vivo, estrogen deficiency resulted in the impairment of bone mineralization and bone mechanical properties. Raloxifene but not estradiol or genistein improved bone mineralization. Estradiol fully normalized the bone mechanical properties, whereas genistein augmented the deleterious effect of estrogen-deficiency on bone strength. In vitro, genistein, estradiol and raloxifene inhibited osteoclast formation from mouse bone marrow cells, decreasing the ratio of RANKL mRNA to osteoprotegerin mRNA expression in osteoblasts. Genistein, but not estradiol or raloxifene, decreased the ratio of alkaline phosphatase mRNA to ectonucleotide pyrophosphatase phosphodiesterase 1 mRNA expression in osteoblasts. This difference may explain the lack of genistein effect on bone mineralization observed in ovariectomized rats in the in vivo study. Concluding, our experiments demonstrated profound differences between the activities of genistein, estradiol and raloxifene towards the osseous tissue in experimental conditions.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 421-432 ◽  
Author(s):  
D DiGiusto ◽  
S Chen ◽  
J Combs ◽  
S Webb ◽  
R Namikawa ◽  
...  

Experimentation on human stem cells is hampered by the relative paucity of this population and by the lack of assays identifying multilineage differentiation, particularly along the lymphoid lineages. In our current study, phenotypic analysis of low-density fetal bone marrow cells showed two distinct populations of CD34+ cells: those expressing a high density of CD34 antigen on their surface (CD34hi) and those expressing an intermediate level of CD34 antigen (CD34lo). Multiple tissues were used to characterize the in vitro and in vivo potential of these subsets and showed that only CD34hi cells support long-term B lymphopoiesis and myelopoiesis in vitro and mediate T, B, and myeloid repopulation of human tissues implanted into SCID mice. CD34lo cells repeatedly failed to provide long-term hematopoietic activity in vivo or in vitro. These results indicate that a simple fractionation based on well-defined CD34 antigen levels can be used to reproducibly isolate cells highly enriched for in vivo long-term repopulating activity and for multipotent progenitors, including T- and B-cell precursors. Additionally, given the limited variability in the results and the high correlation between in vitro and in vivo hematopoietic potential, we propose that the CD34hi population contains virtually all of the stem cell activity in fetal bone marrow and therefore is the population of choice for future studies in hematopoietic stem cell development and gene therapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1337-1337
Author(s):  
Christine Victoria Ichim ◽  
Dzana Dervovic ◽  
David Koos ◽  
Marciano D. Reis ◽  
Alden Chesney ◽  
...  

Abstract The leukemia stem cell model suggests that elucidation of the genes that regulate growth ability within the leukemia cell hierarchy will have important clinical relevance. We showed that the expression of NR2F6 (EAR-2), is greater in clonogenic leukemia single cells than in leukemia cells that do not divide, and that this gene is over-expressed in patients with acute myeloid leukemia and myelodysplastic syndrome. In vivo, overexpression of EAR-2 using a retroviral vector in a chimeric mouse model leads to a condition that resembles myelodysplastic syndrome with hypercellular bone marrow, increased blasts, abnormal localization of immature progenitors, morphological dysplasia of the erythroid lineage and a competitive advantage over wild-type cells, that eventually leads to AML in a subset of the mice, or after secondary-transplantation. Interestingly, animals transplanted with bone marrow that over-expresses EAR-2 develop leukemia that is preceded by expansion of the stem cell compartment in the transplanted mice—suggesting that EAR-2 is an important regulator of hematopoietic stem cell differentiation. Here we report that over-expression of EAR-2 also has a profound effect on the differentiation of erythroid progenitor cells both in vitro and in vivo. Studies of the roles of EAR-2 in normal primary bone marrow cells in vitro showed that overexpression of EAR-2 profoundly impaired differentiation along the erythroid lineage. EAR-2 over-expressing bone marrow cells formed 40% fewer BFU-E colonies, but had greatly extended replating capacity in colony assays. While knockdown of EAR-2 increased the number of cells produced per BFU-E colony 300%. Normal mice transplanted with grafts of purified bone marrow cells that over-expressed EAR-2 developed a rapidly fatal leukemia characterized by pancytopenia, enlargement of the spleen, and infiltration of blasts into the spleen, liver and peripheral blood. Sick animals had profound reduction of peripheral blood cell counts, particularly anemia with a 55% reduction in hemoglobin levels. Anemia was evident even on gross inspection of the blood and the liver in EAR-2 overexpressing animals. Analysis of the leukemic cells revealed an erythroblastic morphology, with the immunophenotype lineageneg, CD71high, TER119med. Hence, we wondered weather EAR-2 caused leukemia by arresting erythroid progenitor cell differentiation. Examination of the bone marrow of pre-leukemic animals showed a four-fold increase in cells with a pro-erythroblastic immunophenotype (CD71highTER119med , region I), and a four-fold decrease in orthochromatophilic erythroblasts (CD71lowTER119high , region IV). We observed no change in the numbers of basophilic erythroblasts (CD71highTER119high , region II) or late basophilic and polychromatophilic erythroblasts (CD71medTER119high, region III). These data suggests that over-expression of EAR-2 blocks erythroid cell differentiation at the pro-erythroblastic stage. Since EAR-2 over-expressing recipients died within 4 week, we wanted to definitively test whether animals had compromised radioprotection. We showed that decreasing the size of the bone marrow graft, reduced survival of the EAR-2 over-expressing cohort by a week, but had no effect on control animals proving that EAR-2 over-expression has a profound effect on erythropoietic reconstitution in vivo. Mechanistically, we show that DNA binding is necessary for EAR-2 function, and that EAR-2 functions in an HDAC-dependent manner, regulating expression of several genes. Pre-leukemic pro-erythroblastic cells (CD71highTER119med) that over-expressed EAR-2 had lower expression of genes involved in erythroid differentiation such as GATA1, EBF1, inhibitor of NFKB (NFKBia), ETV6, CEBP/a, LMO2, and Nfe2, and increased expression of GATA2, GLI1, ID1 and PU.1 than GFP control pro-erythroblasts. These data establish that EAR-2 is a novel oncogene whose cellular function is to regulate terminal differentiation of erythroid cells at the proerythroblastic (CD71highTER119med) stage by deregulating gene expression necessary for erythroid differentiation. Disclosures Ichim: Entest BioMedical: Employment, Equity Ownership, Patents & Royalties, Research Funding. Koos:Entest BioMedical: Employment, Equity Ownership, Patents & Royalties, Research Funding.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3580-3591
Author(s):  
N Falla ◽  
Vlasselaer Van ◽  
J Bierkens ◽  
B Borremans ◽  
G Schoeters ◽  
...  

In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4177-4184 ◽  
Author(s):  
Nadine Mayotte ◽  
Denis-Claude Roy ◽  
Jing Yao ◽  
Evert Kroon ◽  
Guy Sauvageau

Chronic myelogenous leukemia (CML) is a clonal stem cell disease caused by the BCR-ABL oncoprotein and is characterized, in its early phase, by excessive accumulation of mature myeloid cells, which eventually leads to acute leukemia. The genetic events involved in CML's progression to acute leukemia remain largely unknown. Recent studies have detected the presence of theNUP98-HOXA9 fusion oncogene in acute leukemia derived from CML patients, which suggests that these 2 oncoproteins may interact and influence CML disease progression. Using in vitro purging of BCR-ABL–transduced mouse bone marrow cells, we can now report that recipients of bone marrow cells engineered to coexpressBCR-ABL with NUP98-HOXA9 develop acute leukemia within 7 to 10 days after transplantation. However, no disease is detected for more than 2 months in mice receiving bone marrow cells expressing either BCR-ABL orNUP98-HOXA9. We also provide evidence of high levels ofHOXA9 expressed in leukemic blasts from acute-phase CML patients and that it interacts significantly on a genetic level withBCR-ABL in our in vivo CML model. Together, these studies support a causative, as opposed to a consequential, role forNUP98-HOXA9 (and possibly HOXA9) in CML disease progression.


Sign in / Sign up

Export Citation Format

Share Document