scholarly journals Lithium enhancement of megakaryocytopoiesis in culture: mediation via accessory marrow cells

Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 172-176 ◽  
Author(s):  
C Chatelain ◽  
SA Burstein ◽  
LA Harker

Abstract To examine the effect of lithium (Li) on early megakaryocytopoiesis, murine marrow megakaryocytic (CFU-M) and granulocyte-macrophage (CFU-C) progenitors were assayed in vitro with and without addition of lithium chloride (LiCl) to culture. At 2 mM LiCl, the numbers of CFU-M- and CFU- C-derived colonies were increased to 146% +/- 8% and 128% +/- 6% of controls, respectively (p less than 0.005). Enumeration of megakaryocytes per colony showed a 78% increase of colonies (p less than 0.05) containing from 6 to 22 cells, suggesting an increased proliferative capacity of CFU-M in the presence of LiCl. Conditioned media from spleen cells cultured in the presence of both pokeweed mitogen (PWM-SCM) and 2 mM Li increased the numbers of CFU-M and CFU-C to 157% +/- 8% and 183% +/- 8%, respectively (p less than 0.025), compared to control cultures stimulated by PWM-SCM alone. Since the production of active colony-stimulating activities (CSA) from mitogen- stimulated conditioned media requires T lymphocytes, we hypothesized that the enhancement of the growth of early hematopoietic progenitors in marrow cultures was due to a Li-induced CSA production by accessory marrow cells, rather than a direct effect of Li on stem cells. To test this, cyclosporin-A (CyA), a T-lymphocyte function inhibitor known to suppress CSA production in PWM-SCM, was added to marrow cultures in the presence of 2 mM Li. CyA (3 micrograms/ml) abrogated the Li-induced enhancement of CFU-M and CFU-C growth, but had no effect on colony formation when added alone. The data suggest that the Li-induced enhancement of early megakaryocytopoiesis and granulocytopoiesis is due to local production of CSA(s) by an accessory cell population and requires the integrity of T-lymphocyte function.

Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 172-176
Author(s):  
C Chatelain ◽  
SA Burstein ◽  
LA Harker

To examine the effect of lithium (Li) on early megakaryocytopoiesis, murine marrow megakaryocytic (CFU-M) and granulocyte-macrophage (CFU-C) progenitors were assayed in vitro with and without addition of lithium chloride (LiCl) to culture. At 2 mM LiCl, the numbers of CFU-M- and CFU- C-derived colonies were increased to 146% +/- 8% and 128% +/- 6% of controls, respectively (p less than 0.005). Enumeration of megakaryocytes per colony showed a 78% increase of colonies (p less than 0.05) containing from 6 to 22 cells, suggesting an increased proliferative capacity of CFU-M in the presence of LiCl. Conditioned media from spleen cells cultured in the presence of both pokeweed mitogen (PWM-SCM) and 2 mM Li increased the numbers of CFU-M and CFU-C to 157% +/- 8% and 183% +/- 8%, respectively (p less than 0.025), compared to control cultures stimulated by PWM-SCM alone. Since the production of active colony-stimulating activities (CSA) from mitogen- stimulated conditioned media requires T lymphocytes, we hypothesized that the enhancement of the growth of early hematopoietic progenitors in marrow cultures was due to a Li-induced CSA production by accessory marrow cells, rather than a direct effect of Li on stem cells. To test this, cyclosporin-A (CyA), a T-lymphocyte function inhibitor known to suppress CSA production in PWM-SCM, was added to marrow cultures in the presence of 2 mM Li. CyA (3 micrograms/ml) abrogated the Li-induced enhancement of CFU-M and CFU-C growth, but had no effect on colony formation when added alone. The data suggest that the Li-induced enhancement of early megakaryocytopoiesis and granulocytopoiesis is due to local production of CSA(s) by an accessory cell population and requires the integrity of T-lymphocyte function.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 851-856 ◽  
Author(s):  
SA Burstein ◽  
SK Erb ◽  
JW Adamson ◽  
LA Harker

Abstract Mice injected chronically with antiplatelet serum develop an increase in the number of megakaryocytic progenitor cells compared to animals given normal rabbit serum. To examine the specificity of this response, progenitor cells giving rise to megakaryocyte, granulocyte-macrophage, erythroid, and mixed-cell colonies were assayed after injection of various heterosera or saline. All four colony types increased in the serum-treated groups. Since the in vitro proliferation of hematopoietic progenitor cells is promoted by supernatants of mitogen-stimulated spleen cells, we hypothesized that the immune response following antiserum administration resulted in the in vivo activation of T lymphocytes which produced or led to the production of colony stimulating activities. To test this hypothesis, cyclosporin A, a preferential inhibitor of T lymphocyte function, was given to mice concurrently with antiserum and also added to spleen cell cultures in the presence of pokeweed mitogen. Cyclosporin A abrogated the antiserum- related increases in progenitor cell numbers in vivo and the production of colony stimulating activity in vitro. The results suggest that the immune response related to antiserum administration results in the in vivo production of hematopoietic colony stimulating activities that may be identical to those produced in vitro by mitogen-stimulation of spleen cells.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 851-856 ◽  
Author(s):  
SA Burstein ◽  
SK Erb ◽  
JW Adamson ◽  
LA Harker

Mice injected chronically with antiplatelet serum develop an increase in the number of megakaryocytic progenitor cells compared to animals given normal rabbit serum. To examine the specificity of this response, progenitor cells giving rise to megakaryocyte, granulocyte-macrophage, erythroid, and mixed-cell colonies were assayed after injection of various heterosera or saline. All four colony types increased in the serum-treated groups. Since the in vitro proliferation of hematopoietic progenitor cells is promoted by supernatants of mitogen-stimulated spleen cells, we hypothesized that the immune response following antiserum administration resulted in the in vivo activation of T lymphocytes which produced or led to the production of colony stimulating activities. To test this hypothesis, cyclosporin A, a preferential inhibitor of T lymphocyte function, was given to mice concurrently with antiserum and also added to spleen cell cultures in the presence of pokeweed mitogen. Cyclosporin A abrogated the antiserum- related increases in progenitor cell numbers in vivo and the production of colony stimulating activity in vitro. The results suggest that the immune response related to antiserum administration results in the in vivo production of hematopoietic colony stimulating activities that may be identical to those produced in vitro by mitogen-stimulation of spleen cells.


1982 ◽  
Vol 101 (3) ◽  
pp. 354-358 ◽  
Author(s):  
Bengt Hallengren ◽  
Arne Forsgren

Abstract. To explore suppressor T lymphocyte function in Graves' disease, studies were performed in one group of patients in the hyperthyroid state and in another group in the euthyroid state after treatment. Peripheral blood lymphocytes were cultured for 1–7 days., Pokeweed mitogen (PWM; 1.25 μg/ml) was added at the initiation of the cultures or after 24 h. The degree of lymphocyte activation was assessed by measurements of the cellular uptake of [3H]thymidine and expressed in counts per minute (cpm). The suppressor lymphocyte function was estimated by a quotient between the maximum cpm values from cultures with and without pre-incubation. For the hyperthyroid group (n = 15) the quotient was 1.00 ± 0.07 (mean ± sem), for the euthyroid patient group (n = 21) 1.12 ± 0.05 and for the healthy control group (n = 21) 1.37 ± 0.08. There was a significant difference between the quotients for the control group and the hyperthyroid (P < 0.01) as well as the euthyroid (P < 0.05) patient group. The quotients for the two groups of patients did not differ significantly. In conclusion, the present study supports the view of a defect in suppressor T lymphocyte function in patients with Graves' disease in the hyperthyroid state and indicates that this defect can persist in the euthyroid state after treatment.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 663-679
Author(s):  
L Levitt ◽  
TJ Kipps ◽  
EG Engleman ◽  
PL Greenberg

The efficacy of four separate methods of human bone marrow T lymphocyte depletion was assessed, and the effect of T cells and monocytes on in vitro growth of marrow (CFU-GEMM, BFU-E, and CFU-GM) and peripheral blood (BFU-E) hematopoietic progenitors was determined. Extent of T cell depletion was assessed by multiparameter fluorescent cell sorter (FACS) analysis and by functional studies. Cells staining positively by FACS analysis for one or more of three separate fluorescent pan-T cell monoclonal antibodies (MCAbs) comprised 8.4% to 9.5% of control marrow mononuclear cells (MNCs). T cells constituted 3.2% to 5.1% of marrow following single, sequential, or combination treatment with two different pan-T cell MCAbs (Leu 1 and TM1) plus complement, 1.5% to 2.2% of marrow following solid-phase immunoabsorption (“panning”), 0.2% of marrow after sheep cell rosetting, and only 0.05% of marrow after FACS selective cell sorting and gated separation. T cells made up 59% to 73% of control peripheral blood MNCs and 0.8% to 2.8% of peripheral MNCs following sheep cell rosetting plus treatment with Leu 1 MCAb and complement. Mitogen (PHA, Con A) and allogeneic MLC-induced blastogenic responses (stimulation indices, experimental/control or E/C) revealed a concordant decrement in marrow T cell function after MCAb plus complement (E/C of 3.9 to 9.0), after panning (E/C of 1.6 to 3.5) and after sheep cell rosetting (E/C of 0.7 to 1.3), compared with control marrow (E/C of 5.3 to 15.7). After T cell depletion, marrow BFU-E growth was 95% to 120% of control, CFU-GM growth was 90% to 108% of control, and CFU-GEMM growth was 89% to 111% of control. Marrow T cell and/or monocyte depletion did not alter erythropoietin-dependent BFU-E growth in the absence of Mo-conditioned medium (81% to 95% of control), and the addition of as many as 50 to 100 X 10(3) purified marrow monocytes or T cells to 10(5) autologous nonadherent T cell-depleted marrow target cells had a negligible (P greater than .1) effect on marrow BFU-E growth in vitro. Peripheral blood (PB) BFU-E/10(5) T- depleted target cells were 106% +/- 19% of expected; PB BFU-E growth was significantly diminished after monocyte depletion alone (7% +/- 6% of expected) or after monocyte plus T cell depletion (8% +/- 4% of expected).(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 74 (1) ◽  
pp. 207-217
Author(s):  
M. Strath ◽  
C.J. Sanderson

Bone marrow cultures have been established from mice infected with Mesocestoides corti and undergoing parasitic eosinophilia. In the absence of added conditioned medium, eosinophil differentiation ceases, and eosinophils are undetectable by 7 days, whereas neutrophil production continues over several weeks as with normal bone marrow. Eosinophil production can be induced by adding pokeweed mitogen-stimulated spleen supernatants (MSSS) or specific antigen-stimulated spleen supernatants (ASSS) produced from-spleen cells of M. corti-infected mice. In contrast to the continuous production of neutrophils, eosinophil production is transient, suggesting that there is no continued production of eosinophil progenitor cells in these cultures. More eosinophils are produced when MSSS is added at the initiation of cultures, compared to after a delay of 2 weeks, and establishing the cultures at 33 degrees C does not appear to enhance eosinophil production. The eosinophils produced are shown to express the eosinophil differentiation antigen defined by monoclonal antibody NIMP-R13, they produce eosinophil peroxidase in similar amounts to eosinophils taken from mice. They show normal phagocytic activity of antibody-coated erythrocytes and lyse red cells coated with antibodies of IgG1, IgG2a, IgG2b, but not IgM isotypes.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 844-850 ◽  
Author(s):  
RP Witherspoon ◽  
LG Lum ◽  
R Storb ◽  
ED Thomas

Abstract Immunoglobulin secretion was studied in 37 patients between 19 and 106 days after allogeneic HLA-identical (30 patients), allogeneic one HLA- haplotype-identical (three patients), syngeneic (three patients), or autologous (one patient) marrow grafting. E rosette-positive (T) and E rosette-negative (non-T) peripheral blood mononuclear cells were cocultured with pokeweed mitogen for 6 days. Polyvalent immunoglobulin secretion was determined by counting plaque forming cells in a reverse hemolytic plaque assay. The number of antibody secreting cells in cocultures of autologous T and non-T lymphocytes was low in 40 of 44 tests conducted on samples from the 37 patients. Mononuclear or non-T cells from 38 of 40 tests failed to produce antibody when cultured with normal helper T cells. T cells from 23 of 37 tests failed to help normal non-T cells secrete antibody. T lymphocytes from 23 of 41 tests suppressed antibody production greater than 80% by normal T and non-T cells. The suppressor cells were radiosensitive in 17 of the 25 tests. The abnormal function of lymphocyte subpopulations in patients during the first 3 mo after syngeneic, allogeneic or autologous marrow grafting was similar regardless of the type of graft or the presence of acute graft versus host disease.


Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1717-1722 ◽  
Author(s):  
RJ Berenson ◽  
WI Bensinger ◽  
RS Hill ◽  
RG Andrews ◽  
J Garcia-Lopez ◽  
...  

Abstract The CD34 antigen is expressed by 1% to 4% of human and baboon marrow cells, including virtually all hematopoietic progenitors detectable by in vitro assays. Previous work from our laboratory has shown that CD34+ marrow cells can engraft lethally irradiated baboons. Because the CD34 antigen has not been detected on most solid tumors, positive selection of CD34+ cells may be used to provide marrow cells capable of engraftment, but depleted of tumor cells. In seven patients with stage IV breast cancer and two patients with stage IV neuroblastoma, 2.5 to 17.5 x 10(9) marrow cells were separated by immunoadsorption with the anti-CD34 antibody 12–8 and 50 to 260 x 10(6) positively selected cells were recovered that were 64 +/- 16% (range 35% to 92%) CD34+. The patients received 1.0 to 5.2 x 10(6) CD34-enriched cells/kg after marrow ablative therapy. Six patients engrafted, achieving granulocyte counts of greater than 500/mm3 at 34 +/- 10 (range 21 to 47) days and platelets counts of greater than 20,000/mm3 at 46 +/- 14 (range 28 to 66) days posttransplant. Five of these patients showed durable engraftment until the time of death 82 to 386 days posttransplant. One patient failed to sustain engraftment associated with metastatic marrow disease. Three patients died at days 14, 14, and 17 posttransplant, two of whom had evidence of early engraftment. These studies suggest that CD34+ marrow cells are capable of reconstituting hematopoiesis in humans.


Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2386-2395 ◽  
Author(s):  
GD Longmore ◽  
P Pharr ◽  
D Neumann ◽  
HF Lodish

Abstract Increasing direct and indirect evidence suggests that erythropoietin (Epo) promotes both erythropoiesis and megakaryocytopoiesis. Here we report that, in mice infected with a recombinant spleen focus-forming retrovirus (SFFV) expressing an oncogenic erythropoietin receptor (EpoR), there was an increase in platelet count preceding the ensuing erythrocytosis. Concurrently, there was a substantial increase in splenic megakaryocytes. Culture of the bone marrow and spleen cells from infected mice showed enhanced numbers of multipotent megakaryocytic progenitors. DNA polymerase chain reaction analysis of individual megakaryocyte-containing colonies showed recombinant SFFV (SFFVcEpoR) proviral integration. Immunofluorescence of spleen sections showed overexpression of EpoR protein in the megakaryocytes. Mice infected with a strain of SFFV also developed splenic megakaryocytosis without activating overexpression of the EpoR in megakaryocytes. This in vivo system shows that a relationship between erythropoiesis and thrombopoiesis can exist at the level of the Epo-EpoR signaling pathway. Also, SFFV-based vectors may be excellent vehicles for the introduction of genes into multipotent, hematopoietic progenitors, in vitro.


1980 ◽  
Vol 152 (5) ◽  
pp. 1184-1193 ◽  
Author(s):  
T Boon ◽  
J Van Snick ◽  
A Van Pel ◽  
C Uyttenhove ◽  
M Marchand

Tumor cell variants that were rejected by syngeneic mice (tum-) were obtained from mastocytoma P815 by mutagenesis (as described in the accompanying report (13). A considerable T lymphocyte-mediated lysis was observed upon incubation of these tum- variants with peritoneal exudate cells collected a few days after an intraperitoneal challenge of immune animals. Spleen cells from these animals were cytolytic after stimulation in vitro with the immunizing variant. New antigens, absent from the original P815 tum+ cells, were detected on 15 of the 21 tum- variants that were tested. All these antigens appeared to be different. No new antigen was detected on any of 10 mutagenized P815 clones that had retained their ability to form tumors. We compared the evidence obtained in vivo and in vitro for the presence of specific antigens on five tum- variants. Three variants were shown both in vivo and in vitro to carry an individual antigen. One showed no specificity either in vivo or in vitro. However, for one variant, no specificity was observed in vivo, although cytolysis tests demonstrated the existence of a singular antigenic specificity.


Sign in / Sign up

Export Citation Format

Share Document