scholarly journals Identification of human lymphoma cells by antisera to malignancy- associated nucleolar antigens

Blood ◽  
1984 ◽  
Vol 63 (3) ◽  
pp. 559-565
Author(s):  
RJ Ford ◽  
M Cramer ◽  
FM Davis

Abstract The non-Hodgkin's lymphomas (NHL) are a diverse group of human lymphoid neoplasms that have long presented pathologists with formidable diagnostic challenges. These tumors of the immune system are thought to represent neoplastic transformations of most of the recognized stages in T and B lymphocyte ontogeny. Lymphoma cells, however, often simulate their normal lymphocytic counterparts both morphologically and cell surface phenotypically, creating difficulties in discriminating normal from neoplastic lymphocytes. We have used heteroantisera to the human malignancy-associated nucleolar antigen (HMNA) to prospectively evaluate its efficacy in identifying the morphologically neoplastic cells in NHL lesions. In 65 cases of T and B cell histopathologic types of NHL, the antisera reacted with nucleoli in the morphologically and cytogenetically neoplastic lymphoma cells, but not with normal- appearing lymphoid and other cell types present in the lesions. Control specimens from normal and hyperplastic lymphoid tissue also failed to react with anti-HMNA antibodies. Normal activated lymphoid cells in vitro and growth-factor-dependent normal lymphoid cell lines also failed to express the nucleolar antigen(s). These data suggest that the HMNA is a valuable tumor cell marker for neoplastic human lymphoid cell populations and can be used with other types of cell markers for a better definition of the neoplastic cells in NHL.

Blood ◽  
1984 ◽  
Vol 63 (3) ◽  
pp. 559-565
Author(s):  
RJ Ford ◽  
M Cramer ◽  
FM Davis

The non-Hodgkin's lymphomas (NHL) are a diverse group of human lymphoid neoplasms that have long presented pathologists with formidable diagnostic challenges. These tumors of the immune system are thought to represent neoplastic transformations of most of the recognized stages in T and B lymphocyte ontogeny. Lymphoma cells, however, often simulate their normal lymphocytic counterparts both morphologically and cell surface phenotypically, creating difficulties in discriminating normal from neoplastic lymphocytes. We have used heteroantisera to the human malignancy-associated nucleolar antigen (HMNA) to prospectively evaluate its efficacy in identifying the morphologically neoplastic cells in NHL lesions. In 65 cases of T and B cell histopathologic types of NHL, the antisera reacted with nucleoli in the morphologically and cytogenetically neoplastic lymphoma cells, but not with normal- appearing lymphoid and other cell types present in the lesions. Control specimens from normal and hyperplastic lymphoid tissue also failed to react with anti-HMNA antibodies. Normal activated lymphoid cells in vitro and growth-factor-dependent normal lymphoid cell lines also failed to express the nucleolar antigen(s). These data suggest that the HMNA is a valuable tumor cell marker for neoplastic human lymphoid cell populations and can be used with other types of cell markers for a better definition of the neoplastic cells in NHL.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1737-1745 ◽  
Author(s):  
J Bijl ◽  
JW van Oostveen ◽  
M Kreike ◽  
E Rieger ◽  
LM van der Raaij-Helmer ◽  
...  

Abstract Besides their regulatory role in embryogenesis, homeobox (HOX) genes are expressed in a specific manner in hematopoietic cell lineages, implying a role in the molecular regulation of hematopoiesis. Some HOX C cluster genes are found to be expressed in lymphoid cells of mice and humans. Their function and expression in normal hematopoiesis are still largely unknown. We have studied the mRNA expression of HOXC4, HOXC5, and HOXC6 in several stages of lymphocyte maturation by reverse transcriptase-polymerase chain reaction (RT-PCR) and RNA in situ hybridization (RISH). We examined CD34+/CD38low and CD34+/CD38high cells obtained from normal donor bone marrow (BM), a panel of 19 lymphoid cell lines, several types of leukemias and non-Hodgkin's lymphomas (NHL), and lymphocytes isolated from tonsillar tissue and peripheral blood (PB). HOXC4 and HOXC6 were found to be expressed during maturation in B- and T-lymphoid cells. The expression of each gene was found to be initiated at different cell maturation stages. HOXC4 transcripts were present in CD34+/CD38low cells, which are thought to comprise stem cells and noncommitted progenitor cells, and in subsequent stages to terminally maturated lymphoid cells. HOXC6 expression is initiated in equivalents of prothymocyte and pre-pre-B cell stage and remains present in mature cells. However, HOXC5 is only expressed in neoplastic cell lines and in neoplastic cells of NHL, but not in CD34+ BM cells, nor in resting or activated lymphoid cells isolated from tonsil, PB, or in leukemia cells. In cell lines, weak expression of HOXC5 is initiated in equivalents of pre-B cell and common thymocyte stage and is continuously expressed in mature cell lines. Semi-quantitative RT-PCR showed that expression levels of HOXC5 were much lower than those of HOXC4 and HOXC6; furthermore an increase of expression of HOXC4, HOXC5, and HOXC6 during lymphoid cell differentiation was demonstrated. Thus, mainly mature lymphoid cell lines and neoplastic cells of NHL do express HOXC5, in contrast to the lack of expression in normal lymphoid cells and leukemias. These findings suggest involvement of HOXC5 in lymphomagenesis.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1737-1745 ◽  
Author(s):  
J Bijl ◽  
JW van Oostveen ◽  
M Kreike ◽  
E Rieger ◽  
LM van der Raaij-Helmer ◽  
...  

Besides their regulatory role in embryogenesis, homeobox (HOX) genes are expressed in a specific manner in hematopoietic cell lineages, implying a role in the molecular regulation of hematopoiesis. Some HOX C cluster genes are found to be expressed in lymphoid cells of mice and humans. Their function and expression in normal hematopoiesis are still largely unknown. We have studied the mRNA expression of HOXC4, HOXC5, and HOXC6 in several stages of lymphocyte maturation by reverse transcriptase-polymerase chain reaction (RT-PCR) and RNA in situ hybridization (RISH). We examined CD34+/CD38low and CD34+/CD38high cells obtained from normal donor bone marrow (BM), a panel of 19 lymphoid cell lines, several types of leukemias and non-Hodgkin's lymphomas (NHL), and lymphocytes isolated from tonsillar tissue and peripheral blood (PB). HOXC4 and HOXC6 were found to be expressed during maturation in B- and T-lymphoid cells. The expression of each gene was found to be initiated at different cell maturation stages. HOXC4 transcripts were present in CD34+/CD38low cells, which are thought to comprise stem cells and noncommitted progenitor cells, and in subsequent stages to terminally maturated lymphoid cells. HOXC6 expression is initiated in equivalents of prothymocyte and pre-pre-B cell stage and remains present in mature cells. However, HOXC5 is only expressed in neoplastic cell lines and in neoplastic cells of NHL, but not in CD34+ BM cells, nor in resting or activated lymphoid cells isolated from tonsil, PB, or in leukemia cells. In cell lines, weak expression of HOXC5 is initiated in equivalents of pre-B cell and common thymocyte stage and is continuously expressed in mature cell lines. Semi-quantitative RT-PCR showed that expression levels of HOXC5 were much lower than those of HOXC4 and HOXC6; furthermore an increase of expression of HOXC4, HOXC5, and HOXC6 during lymphoid cell differentiation was demonstrated. Thus, mainly mature lymphoid cell lines and neoplastic cells of NHL do express HOXC5, in contrast to the lack of expression in normal lymphoid cells and leukemias. These findings suggest involvement of HOXC5 in lymphomagenesis.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 620-626
Author(s):  
RW Schroff ◽  
MM Farrell ◽  
RA Klein ◽  
HC Stevenson ◽  
NL Warner

We have previously reported that the addition of monocytes results in enhanced modulation of the T65 antigen when normal or leukemic lymphoid cells were cultured in vitro with the T101 monoclonal antibody. In the present investigation, we extend these findings to demonstrate that monocyte-enhanced modulation is a phenomenon that occurs with a variety of T and B lymphoid antigens identified by murine monoclonal antibodies. Two patterns of monocyte-enhanced modulation were observed: (1) augmentation by monocytes of existing antigen modulation by the T101 and anti-Leu-4 antibodies, and (2) induction by monocytes of previously unrecognized modulation with the anti-Leu-2 and anti-Leu-9 antibodies. Enhancement of modulation by monocytes was also detected with antibodies to surface IgM and HLA-DR antigens. Antigen modulation on lymphoid cell lines appeared to be more variable than on fresh cells, with or without monocytes. Monocyte-enhanced antigen modulation was not demonstrated with two monoclonal antibodies against solid tumors. Monocyte-enhanced modulation was shown to be dependent upon the Fc portion of the antibody, but independent of proteolytic or oxidative compounds released by monocytes. These findings indicate that the results obtained during in vitro studies of antigen modulation may vary with the source of cells and the extent to which monocytic cells are present. In addition, these findings suggest an enhanced role for Fc receptor-bearing cells of monocytic origin in antigen modulation following in vivo administration of monoclonal antibodies.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 620-626 ◽  
Author(s):  
RW Schroff ◽  
MM Farrell ◽  
RA Klein ◽  
HC Stevenson ◽  
NL Warner

Abstract We have previously reported that the addition of monocytes results in enhanced modulation of the T65 antigen when normal or leukemic lymphoid cells were cultured in vitro with the T101 monoclonal antibody. In the present investigation, we extend these findings to demonstrate that monocyte-enhanced modulation is a phenomenon that occurs with a variety of T and B lymphoid antigens identified by murine monoclonal antibodies. Two patterns of monocyte-enhanced modulation were observed: (1) augmentation by monocytes of existing antigen modulation by the T101 and anti-Leu-4 antibodies, and (2) induction by monocytes of previously unrecognized modulation with the anti-Leu-2 and anti-Leu-9 antibodies. Enhancement of modulation by monocytes was also detected with antibodies to surface IgM and HLA-DR antigens. Antigen modulation on lymphoid cell lines appeared to be more variable than on fresh cells, with or without monocytes. Monocyte-enhanced antigen modulation was not demonstrated with two monoclonal antibodies against solid tumors. Monocyte-enhanced modulation was shown to be dependent upon the Fc portion of the antibody, but independent of proteolytic or oxidative compounds released by monocytes. These findings indicate that the results obtained during in vitro studies of antigen modulation may vary with the source of cells and the extent to which monocytic cells are present. In addition, these findings suggest an enhanced role for Fc receptor-bearing cells of monocytic origin in antigen modulation following in vivo administration of monoclonal antibodies.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Sara Ranjbarvaziri ◽  
Shah Ali ◽  
Mahmood Talkhabi ◽  
Peng Zhao ◽  
Young-Jae Nam ◽  
...  

Rationale: The traditional definition of “cardiovascular” lineages describes the eponymous cell types - cardiomyoctes, endothelial cells, and smooth muscle cells - that arise from a common mesodermal progenitor cell during heart development. Fibroblasts are an abundant mesenchymal population in the mammalian heart which may have multiple, discrete developmental origins. Mesp1 represents the earliest marker of cardiovascular progenitors, contributing to the majority of cardiac lineages. To date no link between Mesp1 and fibroblast generation has been reported. Objective: We hypothesized progenitor cells expressing Mesp1 can also give rise to cardiac fibroblasts during heart development. Methods and Results: We generated Mesp1cre/+;R26RmTmG reporter mice where Cre-mediated recombination results in GFP activation in all Mesp1 expressing cells and their progeny. To explore their developmental potential, we isolated GFP+ cells from E7.5 Mesp1cre/+;R26RmTmG mouse. In vitro culture and transplantation studies into SCID mouse kidney capsule as wells as chick embryos showed fibroblastic adoption. Results showed that at E9.5 Mesp1+ and Mesp1- progenitors contributed to the proepicardium organ and later at E11.5 they formed epicardium. Analysis of adult hearts demonstrated that the majority of cardiac fibroblasts are derived from Mesp1 expressing cells. Immunohistochemical analysis of heart sections demonstrated expression of fibroblast markers (including DDR2, PDGFRα and Col1) in cells derived from both Mesp1+ and Mesp1- progenitors. Additionally, we investigated whether the two distinct fibroblast populations have different potency towards reprogramming to cardiomyocytes. Results showed no significant difference between Mesp1 and non-Mesp1 isolated fibroblasts to convert to cardiomyocyte fate. Conclusions: Our data demonstrates that cardiovascular progenitors expressing Mesp1 contribute to the proepicardium. These cells, as cardiovascular progenitors, also give rise to the highest portion of cardiac fibroblasts in the mouse heart.


Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 824-829
Author(s):  
BS Wilson ◽  
JL Platt ◽  
NE Kay

Several mouse monoclonal IgG antibodies (AB1, AB2, AB3, and AB5) were developed that reacted with a 140,000 mol wt glycoprotein on the surface of cultured RAJI B lymphoid cells. The antibodies reacted with purified normal human peripheral blood B cells and CLL Ig+ B cells and showed specific germinal center and mantle zone staining in tissue sections of secondary lymphoid organs. Immunodepletion studies using 125I surface-labeled Raji cell membrane antigens demonstrated that the antigen identified by AB5 is the same 140,000 mol wt glycoprotein detected by anti-B2 that has recently been shown to react with the C3d fragment or CR2 receptor. (Iida et al: J Exp Med 158:1021, 1983). Addition of the AB series and anti-B2 monoclonal antibodies to cultures of purified human peripheral blood B cells resulted in the uptake of 3H- thymidine at two to six times background control levels provided that irradiated autologous T cells were added to the culture. Stimulation was not evoked by other monoclonal antibodies to B cell surface molecules (ie, B1, BA-1, BA-2, and HLA-DR). Pepsin-generated F(ab')2 fragments of anti-CR2 antibodies were essentially as effective as the intact IgG molecule in stimulating B cells. Induction of B cell proliferation by antibody binding to CR2 suggests that the C3d receptor may have an integral role in regulation of humoral immune response.


2020 ◽  
Author(s):  
Nathalia Azevedo ◽  
Elisa Bertesago ◽  
Ismail Ismailoglu ◽  
Michael Kyba ◽  
Michihiro Kobayashi ◽  
...  

AbstractThe in vitro generation from pluripotent stem cells (PSCs) of different blood cell types, in particular those that are not replenished by hematopoietic stem cells (HSCs) like fetal-derived tissue-resident macrophages and innate-like lymphocytes, is of a particular interest. In order to succeed in this endeavor, a thorough understanding of the pathway interplay promoting lineage specification for the different blood cell types is needed. Notch signaling is essential for the HSC generation and their derivatives, but its requirement for tissue-resident immune cells is unknown. Using mouse embryonic stem cells (mESCs) to recapitulate murine embryonic development, we have studied the requirement for Notch signaling during the earliest B-lymphopoiesis and found that Rbpj-deficient mESCs are able to generate B-1 cells. Their Notch-independence was confirmed in ex vivo experiments using Rbpj-deficient embryos. In addition, we found that upregulation of Notch signaling was needed for the emergence of B-2 lymphoid cells. Taken together, these findings indicate that control of Notch signaling dosage is critical for the different B-cell lineage specification and provides pivotal information for their in vitro generation from PSCs for therapeutic applications.


PEDIATRICS ◽  
1976 ◽  
Vol 57 (1) ◽  
pp. 162-162
Author(s):  
Luis Borella ◽  
Luisa Sen

Seeger and Stiehm should be congratulated on their recent careful review of a complex subject, T and B lymphocyte subpopulations.1 They correctly point out the technical problems in the identification of these cell types as well as their significance in the evaluation of certain immunological disorders. In their discussion of T-cell leukemia, however, the authors make the point that T-cell malignancies may be more frequent in younger children, on the basis of a review of lymphoid cell subpopulations by Kersey et al.2


2018 ◽  
Vol 2 (S1) ◽  
pp. 11-12
Author(s):  
Mark H. Murdock ◽  
Jordan T. Chang ◽  
George S. Hussey ◽  
Nduka M. Amankulor ◽  
Johnathan A. Engh ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Gliomas are the most lethal and common primary tumor type in the central nervous system across all age groups; affected adults have a life expectancy of just 14 months. As glioma cells invade the surrounding normal parenchyma they remodel the composition and ultrastructure of the surrounding extracellular matrix (ECM), suggesting that the native (i.e., “normal”) microenvironment is not ideal for their survival and proliferation. Recent reports describe suppressive and/or lethal effects of mammalian ECM hydrogels derived from normal (nonneoplastic) sources upon various cancer types. ECM-based bioscaffolds placed at sites of neoplastic tissue resection in humans have never been reported to facilitate cancer recurrence. The objective of the present research is to evaluate mammalian ECM as a novel approach to glioma therapy. METHODS/STUDY POPULATION: ECM hydrogels from porcine dermis, small intestine, and urinary bladder were produced as described previously. Primary glioma cells were graciously supplied by Drs. Nduka Amankulor and Johnathan Engh, and U-87 MG were ordered through ATCC. Cells were plated onto tissue culture plastic at ~60% confluence and allowed to attach for 24 hours before treatment. The saline-soluble fraction (SSF) of ECM was obtained by mixing lyophilized, comminuted ECM with 0.9% saline for 24 hours then filtering the resulting mixture through a 10 kDa molecular weight cutoff column. All assays and kits were followed according to the manufacturer’s instructions. Cell viability was measured via MTT assay (Vybrant® MTT Cell Proliferation Assay, Invitrogen) and by live/dead staining (LIVE/DEAD® Cell Imaging Kit, Invitrogen). Time lapse videos were created by taking images every 20 minutes for 18 hours (phase-contrast) or every 10 minutes for 12 hours (darkfield). NucView reagent was ordered from Biotium. Temozolomide was ordered through Abmole. All in vivo work was conducted according to protocols approved by the University of Pittsburgh’s IACUC office. RESULTS/ANTICIPATED RESULTS: ECM hydrogels derived from porcine dermis, small intestine, or urinary bladder all decreased the viability of primary glioma cells in vitro, with urinary bladder extracellular matrix (UBM) having the most dramatic effects. The SSF of UBM (UBM-SSF), devoid of the fibrillar, macromolecular components of ECM, was sufficient to recapitulate this detrimental effect upon neoplastic cells in vitro and was used for the remainder of the experiments described herein. In a cell viability assay normalized to the media treatment, non-neoplastic CHME5 and N1E-115 cells scored 103% and 114% after 48 hours when treated with UBM-SSF and 2 primary high-grade glioma cell types scored 17% and 30.5% with UBM-SSF (n=2). Phase-contrast time-lapse video showed CHME5 and HFF thriving in the presence of UBM-SSF for 18 hours while most primary glioma cells shriveled and died within this time. Darkfield time-lapse video of wells containing Nucview dye, fluorescent upon cleavage by active caspase-3, confirmed that within 12 hours most primary glioma cells underwent apoptosis while CHME5 and HFF did not. In culture with primary astrocytes, high grade primary glioma cells, and U-87 MG glioma cells for 24 hours, UBM-SSF was found to significantly increase the population of primary astrocytes compared with media (p<0.05) while decreasing the 2 glioma cell types to approximately one-third as many cells as the media control (p<0.0001). A dose-response of temozolomide from 0 to 10,000 μM showed that when treating 2 non-neoplastic cell types (CHME5 and HFF) and 2 types of primary glioma cell there was no difference in survivability at any concentration. Contrasted to this, a dose-response of UBM-SSF from 350 to 7000 μg/mL showed that the non-neoplastic cells survived significantly better than the glioma cells at concentrations of 875 μg/mL and upward (p<0.05). In preliminary animal experiments, large primary glioma tumors in the flanks of athymic nude mice were resected and replaced with either UBM SSF or Matrigel (an ECM product of neoplastic cell origin). After 7 days the resection sites with UBM-SSF had little tumor regrowth if any compared with the dramatic recurrence seen in the Matrigel injection sites (n=2). In a separate survival study comparing PBS to UBM-SSF injections in the flank-resection model, all animals given PBS had to be sacrificed at 9, 11, and 11 days (n=3) whereas animals given UBM-SSF were sacrificed at 15, 24, and 39 days (n=3), indicating a moderate increase in survival due to the UBM-SSF. DISCUSSION/SIGNIFICANCE OF IMPACT: Since the introduction of the pan-cytotoxic chemotherapeutic agent TMZ in 2005, the standard of care for patients with glioblastoma multiforme has not improved. These findings indicate that non-neoplastic ECM contains potent bioactive regulators capable of abrogating malignancy. Our in vitro data suggest these molecules appear to have no deleterious effect on non-neoplastic cells while specifically inducing apoptosis in glioma cells. Our in vivo data suggest that these molecules may be useful in delaying glioma recurrence, thus resulting in extended lifespan. Delivering soluble fractions of ECM to a tumor site may represent a novel approach to glioma therapy, sidestepping traditional cytotoxic therapies in favor of utilizing putative endogenous anti-tumor pathways.


Sign in / Sign up

Export Citation Format

Share Document