scholarly journals Further studies of the secretory pathway in thrombin-stimulated human platelets

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1196-1203 ◽  
Author(s):  
JG White ◽  
M Krumwiede

Abstract The pathway followed by secretory products stored in platelet alpha granules during the release reaction remains controversial. Tannic acid has been used in the present study as an electron-dense stain to follow the secretory process in thrombin-stimulated platelets. Preliminary experiments demonstrated that tannic acid precipitates fibrinogen, and binds osmium tetroxide to fibrinogen and fibrin strands. Examination of platelets fixed at short intervals after exposure to thrombin and incubated in solutions containing tannic acid revealed electron-dense deposits of osmium not apparent in resting platelets. Granules and lumina of channels making up the open canalicular system (OCS) were unstained in discoid cells. However, exposure to thrombin at concentrations of 1 to 5 U/mL for thirty seconds or more resulted in intense staining of alpha granules by osmium. Some granules communicated directly with dilated channels of the OCS, and several were frequently connected to the same canaliculus. The electron-dense substance in swollen granules and channels appeared to be in the process of extrusion through narrow or dilated openings of the OCS onto the platelet surface. Granule-to-granule fusion and formation of sealed vacuoles of fused granule products unstained by tannic acid-osmium were not observed. The findings support the concept that secretion by stimulated human platelets results from development of direct communications between granules and channels of the OCS and subsequent extrusion of products through channel pores to the surrounding medium.

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1196-1203 ◽  
Author(s):  
JG White ◽  
M Krumwiede

The pathway followed by secretory products stored in platelet alpha granules during the release reaction remains controversial. Tannic acid has been used in the present study as an electron-dense stain to follow the secretory process in thrombin-stimulated platelets. Preliminary experiments demonstrated that tannic acid precipitates fibrinogen, and binds osmium tetroxide to fibrinogen and fibrin strands. Examination of platelets fixed at short intervals after exposure to thrombin and incubated in solutions containing tannic acid revealed electron-dense deposits of osmium not apparent in resting platelets. Granules and lumina of channels making up the open canalicular system (OCS) were unstained in discoid cells. However, exposure to thrombin at concentrations of 1 to 5 U/mL for thirty seconds or more resulted in intense staining of alpha granules by osmium. Some granules communicated directly with dilated channels of the OCS, and several were frequently connected to the same canaliculus. The electron-dense substance in swollen granules and channels appeared to be in the process of extrusion through narrow or dilated openings of the OCS onto the platelet surface. Granule-to-granule fusion and formation of sealed vacuoles of fused granule products unstained by tannic acid-osmium were not observed. The findings support the concept that secretion by stimulated human platelets results from development of direct communications between granules and channels of the OCS and subsequent extrusion of products through channel pores to the surrounding medium.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 878-885 ◽  
Author(s):  
JG White

Abstract Human platelets contain tortuous channels in their cytoplasm, the surface-connected or open canalicular system (OCS), that communicate directly with the surrounding medium through openings on the surface membrane. Some workers have suggested that the OCS serves as the egress route for products secreted during the release reaction. Others have proposed alternate secretory pathways. Since bovine platelets lack the OCS found in human cells, the present study has examined the secretory mechanism of these cells to see whether it can shed light on the mystery of human platelet secretion. Bovine platelet granules, in contrast to human granules, are located more peripherally in resting cells (often in contact with the plasma membrane), most do not move centrally following thrombin stimulation as do human platelet granules, and many fuse directly with the external plasma membrane without any intermediate channel. The lack of peripheral location of human granules, their central rather than peripheral movement during secretion, and the presence of extensive channels are all consistent with the larger importance of the secretory channel to human platelets. Thus, though studies of bovine secretion do show that platelets can secrete their granules by direct fusion of granule and surface membranes, other differences from human platelets emphasize that this pathway, although important to bovine platelet secretion, is less important in human platelets. Studies of bovine platelets also show that the OCS is more dynamic than might have been considered from human studies and can form rapidly in response to stimulation. Such newly formed channels are used as a conduit for secretion of granule contents. The finding emphasizes the importance of channels for granule secretion in platelets generally and puts a new perspective on the ability of these cells to form channels rapidly in response to stimulation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3533-3533
Author(s):  
James G. White

Youssefian et al. (Blood2002; 99:4021) have recently reported that engulfment of Staphylococcus Aureus (S.A.) by human platelets is more like phagocytosis by polymorphonuclear leukocytes (PMN) than previously considered.1 Electron microsopy and ultrastructural immunocytochemistry revealed that the engulfment vacuoles containing bacteria were entirely made up of invaginated surface membrane. The surface-connected, open canalicular system (OCS), a tortuous system of interconnected channels continuous with the surface membrane, was not involved in uptake of bacteria. Many of our previous investigations have examined platelet-particle and platelet bacterial interaction, and disagree with the findings of Youssefian et al.1 The present study has used tannic acid as an electron dense tracer to evaluate the hypothesis indicating the OCS is not involved in bacterial uptake.1 Platelets in platelet-rich plasma (PRP) or in washed suspensions (WPS) and samples of PMN were incubated at 37°C with S.A. 502A or S.A. RN 450 for 15, 30, 60, and 120 minutes with or without added ADP.1 Fixation of samples was carried out in glutaraldehyde and osmic acid in the presence of tannic acid. The tannic acid selectively binds to the glycocalyx covering the exterior platelet surface and lining channels of the OCS, and converts osmium to osmium black visible as an electron dense stain. It also combines with fibrinogen/fibrin permitting visualization of α-granule secretion into the OCS. Interaction with bacteria during incubation is variable and infrequent, unless the sample is stirred or an aggregating agent like ADP is added.1 The bacterium attaches itself to the platelet surface, often at or near the opening of an OCS channel. The platelet cannot move the bacterium across the surface as it does small particles up to the size of α granules. Instead the platelet molds itself to the surface, just as it does to large latex spheres and flat surfaces. However, the latter surfaces cannot be internalized, and the platelet continues to spread causing evagination of the OCS to add to the total surface area covered. Bacteria can be internalized. Platelet spreading over the organism causes delilation of the openings of OCS channels. More canaliculi are recruited from the spiderweb of interconnected OCS channels to make a vacuole. Tannic acid staining shows the platelet engulfment vacuoles always contain osmium black around the bacterium, whereas PMN phagocytic vacuoles are never stained. α granules secreting fibrinogen/fibrin into OCS channels stained by tannic acid also discharge their contents into engulfment vacuoles containing bacteria. Direct communication between engulfment vacuoles and the platelet exterior through tannic acid stained OCS canaliculi were identified, while communicating OCS channels were out of the plane of section in other examples. Since the only way tannic acid could stain the engulfment vacuoles containing bacteria was by way of the OCS, it is clear that the OCS is involved in their interiorization. Thus the platelet is a covercyte, not a phagocyte, and its interaction with bacteria is very different from that of the PMN which does not have an OCS.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 878-885 ◽  
Author(s):  
JG White

Human platelets contain tortuous channels in their cytoplasm, the surface-connected or open canalicular system (OCS), that communicate directly with the surrounding medium through openings on the surface membrane. Some workers have suggested that the OCS serves as the egress route for products secreted during the release reaction. Others have proposed alternate secretory pathways. Since bovine platelets lack the OCS found in human cells, the present study has examined the secretory mechanism of these cells to see whether it can shed light on the mystery of human platelet secretion. Bovine platelet granules, in contrast to human granules, are located more peripherally in resting cells (often in contact with the plasma membrane), most do not move centrally following thrombin stimulation as do human platelet granules, and many fuse directly with the external plasma membrane without any intermediate channel. The lack of peripheral location of human granules, their central rather than peripheral movement during secretion, and the presence of extensive channels are all consistent with the larger importance of the secretory channel to human platelets. Thus, though studies of bovine secretion do show that platelets can secrete their granules by direct fusion of granule and surface membranes, other differences from human platelets emphasize that this pathway, although important to bovine platelet secretion, is less important in human platelets. Studies of bovine platelets also show that the OCS is more dynamic than might have been considered from human studies and can form rapidly in response to stimulation. Such newly formed channels are used as a conduit for secretion of granule contents. The finding emphasizes the importance of channels for granule secretion in platelets generally and puts a new perspective on the ability of these cells to form channels rapidly in response to stimulation.


1989 ◽  
Vol 62 (03) ◽  
pp. 955-961 ◽  
Author(s):  
Ian S Watts ◽  
Rebecca J Keery ◽  
Philip Lumley

SummaryWe have investigated the effect of two procedures that modify human platelet surface membrane glycoprotein (Gp) IIb and IIIa complexes upon whole blood platelet aggregation to a range of agonists. (A) Irreversible disruption of complexes by temporary (30 min) Ca2+-deprivation with EGTA at 37° C. (B) Binding of a monoclonal antibody M148 to the complex. EGTA exposure abolished aggregation to ADP, adrenaline and PAF. In contrast, full aggregation curves to collagen and U-46619 could still be established. EGTA exposure reduced M148 binding to platelets by 80%. Excess M148 abolished aggregation to ADP, PAF, collagen and U-46619. However, upon removal of unbound antibody from platelets full aggregation curves to collagen and U-46619 but not to ADP and PAF could be re-established. Thus human platelet aggregation to ADP, PAF and adrenaline appears absolutely dependent upon surface membrane GpIIb/IIIa complexes. In contrast, collagen and U-46619 cause expression of an additional distinct pool of Gp complexes inaccessible to EGTA and M148 in unstimulated platelets which is intimately involved in aggregation to these agonists.


1986 ◽  
Vol 55 (02) ◽  
pp. 268-270
Author(s):  
R J Alexander

SummaryAn attempt was made to isolate from plasma the platelet surface substrate for thrombin, glycoprotein V (GPV), because a GPV antigen was reported to be present in plasma (3). Plasma fractionation based on procedures for purification of GPV from platelets revealed a thrombin-sensitive protein with appropriate electrophoretic mobility. The protein was purified; an antiserum against it i) reacted with detergent-solubilized platelet proteins or secreted proteins in a double diffusion assay, ii) adsorbed a protein from the supernatant solution of activated platelets, and iii) inhibited thrombin-induced platelet activation, but the antiserum did not adsorb labeled GPV. The purified protein was immunochemically related to prothrombin rather than to GPV. Other antibodies against prothrombin were also able to adsorb a protein from platelets. It is concluded that 1) plasma does not contain appreciable amounts of GPV, and 2) platelets contain prothrombin or an immunochemically similar protein.


2000 ◽  
Vol 278 (6) ◽  
pp. H2008-H2019 ◽  
Author(s):  
Anna Babinska ◽  
Michael V. Hogan ◽  
Tomasz Sobocki ◽  
Malgorzata B. Sobocka ◽  
Yigal H. Ehrlich ◽  
...  

Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[α32P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[α32P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca2+flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.


Author(s):  
Kerstin Jurk ◽  
Katharina Neubauer ◽  
Victoria Petermann ◽  
Elena Kumm ◽  
Barbara Zieger

AbstractSeptins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes.


1998 ◽  
Vol 332 (3) ◽  
pp. 593-610 ◽  
Author(s):  
Peter ARVAN ◽  
David CASTLE

Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.


2003 ◽  
Vol 89 (02) ◽  
pp. 340-347 ◽  
Author(s):  
Monica Bari ◽  
Domenico Del Principe ◽  
Alessandro Finazzi-Agrò ◽  
Mauro Maccarrone

SummaryThe endocannabinoid 2-arachidonoylglycerol (2-AG) has been shown to activate human platelets in platelet-rich plasma, by binding to a “platelet-type” cannabinoid receptor (CBPT). Here, washed human platelets were used to characterize the binding of [3H]2-AG to CBPT, showing a dissociation constant (Kd) of 140 ± 31 nM and a maximum binding (Bmax) of 122 ± 10 pmol.mg protein-1. Selective antagonists of both CB1 and CB2 cannabinoid receptors inhibited this binding, which was enhanced up to ~230% over the controls by 1 µM serotonin (5-hydroxytryptamine, 5-HT). Human platelets were also able to bind [3H]5-HT (Kd = 79 ± 17 nM, Bmax = 14.6 ± 1.3 pmol.mg protein-1), and 1 µM 2-AG enhanced this binding up to ~150%. Moreover, they were able to take up [3H]5-HT through a high affinity transporter (Michaelis-Menten constant = 22 ± 2 nM, maximum velocity = 344 ± 15 pmol.min-1.mg protein-1), which was not affected by 2-AG. Interestingly, 5-HT did not affect the activity of the 2-AG transporter of human platelets. Treatment of washed platelets with 1 µM 2-AG led to increased intracellular inositol-1,4,5-trisphosphate (up to ~300%) and decreased cyclic AMP (down to ~50%). Furthermore, treatment of pre-loaded platelets with 1 µM 2-AG induced a ~300% increase in [3H]2-AG release, according to a CBPT-dependent mechanism. Also, 1 µM 5-HT enhanced the effect of 2-AG on inositol-1,4,5-trisphosphate (~500% of the controls), cyclic AMP (~20%) and [3H]2-AG release (~570%), and the latter process was shown to be partly (~50%) involved in the 5-HT-dependent platelet activation. Taken together, reported findings represent the first demonstration that 2-AG and 5-HT can mutually reinforce their receptor binding on platelet surface, which might have therapeutic implications.


Sign in / Sign up

Export Citation Format

Share Document