scholarly journals Effects of B cell stimulatory factor-1/interleukin 4 on hematopoietic progenitor cells

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 254-263 ◽  
Author(s):  
C Peschel ◽  
WE Paul ◽  
J Ohara ◽  
I Green

Abstract B cell stimulatory factor-1 (BSF-1)/Interleukin 4 (IL 4) is a T cell product originally characterized on the basis of its actions on B lymphocytes. Recently it has been reported that BSF-1 activates T cell and mast cell lines. We now provide evidence that BSF-1, purified to homogeneity, also has a broad spectrum of activity on hematopoietic progenitor cells (HPC). However, like its action on B cells, prolierative effects were only observed when BSF-1 was combined with an additional factor. Thus BSF-1, in costimulation with recombinant G-CSF, enhances the proliferation of granulocyte-macrophage progenitor cells (CFU-GM). BSF-1 increases the proliferation of CFU-e in the presence of recombinant erythropoietin (rEPO). Furthermore, BSF-1 induces, together with rEPO, colony formation by primitive erythroid (BFU-e) and multipotent (CFU-mix) progenitor cells comparable to that observed with rEPO and interleukin 3 (IL 3). BSF-1 is also active as a megakaryocyte colony-stimulating factor; in combination with recombinant interleukin 1, rEPO or the supernatant of the T cell hybridoma FS7–20.6.18, BSF-1 induces megakaryocyte colony formation (CFU-Mk). The same factors that synergize with BSF-1 also enhance CFU-Mk proliferation induced by IL 3. Although the precise mechanisms of action of BSF-1 on HPC is not yet known, we propose that BSF-1 represents an activation factor for HPC and prepares the progenitor cells to respond to specific growth or differentiation factors.

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 254-263
Author(s):  
C Peschel ◽  
WE Paul ◽  
J Ohara ◽  
I Green

B cell stimulatory factor-1 (BSF-1)/Interleukin 4 (IL 4) is a T cell product originally characterized on the basis of its actions on B lymphocytes. Recently it has been reported that BSF-1 activates T cell and mast cell lines. We now provide evidence that BSF-1, purified to homogeneity, also has a broad spectrum of activity on hematopoietic progenitor cells (HPC). However, like its action on B cells, prolierative effects were only observed when BSF-1 was combined with an additional factor. Thus BSF-1, in costimulation with recombinant G-CSF, enhances the proliferation of granulocyte-macrophage progenitor cells (CFU-GM). BSF-1 increases the proliferation of CFU-e in the presence of recombinant erythropoietin (rEPO). Furthermore, BSF-1 induces, together with rEPO, colony formation by primitive erythroid (BFU-e) and multipotent (CFU-mix) progenitor cells comparable to that observed with rEPO and interleukin 3 (IL 3). BSF-1 is also active as a megakaryocyte colony-stimulating factor; in combination with recombinant interleukin 1, rEPO or the supernatant of the T cell hybridoma FS7–20.6.18, BSF-1 induces megakaryocyte colony formation (CFU-Mk). The same factors that synergize with BSF-1 also enhance CFU-Mk proliferation induced by IL 3. Although the precise mechanisms of action of BSF-1 on HPC is not yet known, we propose that BSF-1 represents an activation factor for HPC and prepares the progenitor cells to respond to specific growth or differentiation factors.


1992 ◽  
Vol 175 (4) ◽  
pp. 1151-1154 ◽  
Author(s):  
J H Jansen ◽  
J C Kluin-Nelemans ◽  
J Van Damme ◽  
G J Wientjens ◽  
R Willemze ◽  
...  

Since monocytes and macrophages that arise during the culture of bone marrow progenitor cells are potential sources of interleukin 6 (IL-6), we investigated whether auto- or paracrine production of this factor is involved in colony formation by normal hematopoietic progenitor cells. We added a polyclonal anti-IL-6 antiserum and a monoclonal anti-IL-6 antibody to cultures of monocyte- and T cell-depleted bone marrow cells. Colony formation was stimulated with granulocyte/monocyte-colony-stimulating factor (GM-CSF), monocyte-CSF, or IL-3. Addition of anti-IL-6 antibody resulted in decreased numbers of monocytic colonies to 40-50% of control values, whereas the numbers of granulocytic colonies were not altered. The inhibitory effect was preserved in cultures of CD34(+)-enriched bone marrow cells. As a second approach, we added a monoclonal antibody directed against the IL-6 receptor to cultures of monocyte- and T cell-depleted bone marrow cells. This antibody almost completely inhibited the growth of monocytic colonies, again without decreasing the number of granulocytic colonies. Finally, the importance of IL-6 in monocytopoiesis was demonstrated in serum-deprived bone marrow cultures: addition of exogenous IL-6 to cultures stimulated with GM-CSF resulted in increased numbers of monocytic colonies. Our results indicate that the permissive presence of IL-6 is required for optimal monocytic colony formation by bone marrow progenitor cells.


Blood ◽  
2007 ◽  
Vol 110 (12) ◽  
pp. 3862-3870 ◽  
Author(s):  
Stephane Chappaz ◽  
Lukas Flueck ◽  
Andrew G. Farr ◽  
Antonius G. Rolink ◽  
Daniela Finke

AbstractInterleukin 7 (IL-7) plays a crucial role in adult lymphopoiesis, while in fetal life its effect can be partially compensated by TSLP. Whether adult hematopoietic progenitor cells are unresponsive to TSLP or whether TSLP is less available in adult microenvironments is still a matter of debate. Here, we show that increased TSLP availability through transgene (Tg) expression fully restored lymphopoiesis in IL-7–deficient mice: it rescued B-cell development, increased thymic and splenic cellularities, and restored double-negative (DN) thymocytes, αβ and γδ T-cell generation, and all peripheral lymphoid compartments. Analysis of bone marrow chimeras demonstrated that hematopoietic progenitor cells from adult wild-type mice efficiently differentiated toward B- and T-cell lineages in lethally irradiated IL-7 deficient mice provided TSLP Tg was expressed in these mice. In vitro, TSLP promoted the differentiation of uncommitted adult bone marrow progenitors toward B and T lineages and the further differentiation of DN1 and DN2 thymocytes. Altogether, our results show that adult hematopoietic cells are TSLP responsive and that TSLP can sustain long-term adult lymphopoiesis.


Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1446-1454 ◽  
Author(s):  
N Katayama ◽  
M Nishikawa ◽  
F Komada ◽  
N Minami ◽  
S Shirakawa

Abstract A possible role for calmodulin in the colony growth of human hematopoietic progenitor cells was investigated using pharmacologic approaches. We obtained evidence for a dose-dependent inhibition of colony formation of myeloid progenitor cells (CFU-C) stimulated by interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte CSF (G-CSF) by three calmodulin antagonists, N- (6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), N- (4-aminobutyl)-5-chloro-2-naphthalenesulfonamide hydrochloride (W-13), and trifluoperazine. Chlorine-deficient analogs of W-7 and W-13, with a lower affinity for calmodulin, did not inhibit the growth of CFU-C colonies. W-7, W-13, and trifluoperazine inhibited the colony formation of immature erythroid progenitor cells (BFU-E) stimulated by IL-3 plus erythropoietin (Ep) or GM-CSF plus Ep, in a dose-dependent manner, while they did not affect the colony formation of mature erythroid progenitor cells (CFU-E) induced by Ep. W-7, W-13, and trifluoperazine also led to a dose-dependent inhibition of GM-CSF-induced colony formation of KG-1 cells. Calmodulin-dependent kinase activity derived from the KG-1 cells was inhibited by these three calmodulin antagonists in a dose-dependent manner. These data suggest that calmodulin may play an important regulatory role via a common process in the growth of hematopoietic progenitor cells stimulated by IL-3, GM-CSF, and G-CSF. Mechanisms related to the growth signal of Ep apparently are not associated with calmodulin-mediated systems.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1345-1345
Author(s):  
Xingmin Feng ◽  
Tatsuya Chuhjo ◽  
Xuzhang Lu ◽  
Hiroyuki Takamatsu ◽  
Chiharu Sugimori ◽  
...  

Abstract A large body of evidence has suggested that acquired aplastic anemia (AA) of patients carrying HLA-DR15 is a kind of organ-specific autoimmune disease where hematopoietic progenitor cells in bone marrow are attacked by CD4+ T cells recognizing endogenous antigens. We recently identified diazepam-binding inhibitor-related protein 1 (DRS-1) as a candidate autoantigen capable of provoking immune system attack against hematopoietic progenitor cells in AA (Blood, 2004). Although in other organ-specific autoimmune diseases such as insulin-dependent diabetes mellitus and primary biliary cirrhosis, cytoplasmic proteins including glutamic acid decarboxylase 65 and pyruvate dehydrogenase complex have been shown to serve as autoantigens and mediate organ damages by CD4+ T cells, it remains unclear whether a peroxisomal protein like DRS-1 can be processed in hematopoietic progenitor cells, presented by HLA-DR15, and eventually serve as a target antigen of specific CD4+ T cells, leading to killing of hematopoietic progenitor cells themselves. To clarify these issues, we established a CD4+ T-cell line specific to a DRS-1 peptide (amino acid residues 191–204) from an AA patient carrying HLA-DR15 who had exhibited a high titer of anti-DRS-1 antibody as well as a high frequency of T-cell precursors specific to DRS-1, and then examined the cytotoxicity of the DRS-1-specific T-cell line against (1) autologous lymphoblastoid cell line (LCL) cells transfected with full length DRS-1 cDNA using a lentiviral vector, (2) myeloid leukemia cell lines carrying HLA-DR15 (KH88 and SAS413) and a leukemia cell line not carrying HLA-DR15 (K562), and (3) CD34+ progenitor cells from normal individuals. When all leukemia cell lines and LCL cells were examined for DRS-1 expression using Western blotting with specific monoclonal antibodies, DRS-1 protein was detected in DRS-1-transfected LCL cells, KH88 and K562, but not in nontransfected LCL cells and SAS413. Overexpression of DRS-1 gene by the CD34+ cells from normal individuals was ascertained by real-time PCR. In the 51Cr release assay, DRS-1-specific T cells showed cytotoxicity against only DRS-1-transfected LCL cells and KH88 in a dose-dependent manner (Figure), indicating that the T cell line requires presence of both DRS-1 and HLA-DR15 on target cells to exert cytotoxicity. When the DRS-1-specific T cells were incubated with CD34+ cells isolated from normal individuals with or without HLA-DR15 at an 10:1 ratio for 4 hours and cultured in a methylcellulose medium supplemented with colony-stimulating factors, the numbers of CFU-GM and BFU-E colonies derived from an HLA-DR15+ individual were 60.0% and 52.9% of a control whereas those derived from an HLA-DR15− individual were 90.1% and 88.2%. These findings indicate that hematopoietic progenitor cells in individuals with HLA-DR15 can present DRS-1 through the DR molecule and a breakdown of immune tolerance to DRS-1 may lead to development of AA.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1206-1206 ◽  
Author(s):  
Heather A. O'Leary ◽  
Charlie Mantel ◽  
Xianyin Lai ◽  
Scott Cooper ◽  
Giao Hangoc ◽  
...  

Abstract DPP4 (CD26) is a dipeptidyl peptidase that functions by enzymatically cleaving the penultimate proline, alanine or select other amino acids such as serine of proteins, resulting in functional alterations of the protein. We recently published that many cytokines, chemokines and growth factors have putative DPP4 truncations sites and that DPP4 specifically was able to truncate some colony stimulating factors such as GM-CSF and IL-3 with resultant blunting of their activity. However, the mechanism of action of the truncated factors is still unknown and requires further investigation. The expression, and activity, of DPP4 is relevant in normal and malignant hematopoiesis as we have data showing that CD34+ umbilical cord blood cells (UCB) as well as Acute Myelogenous Leukemia (AML) patient samples express active DPP4. Further, specific inhibition of DPP4 increases homing and engraftment of both human UCB and mouse bone marrow cells after transplantation in mice indicating the therapeutic potential of DPP4 activity altering compounds. Due to its potential importance in disease states, and their subsequent treatment, it is relevant to study how the activity of DPP4 alters the functions of the molecules it cleaves, and subsequently their interactions with each other. DPP4 can cleave the penultimate proline of GM-CSF and IL-3 resulting in truncated forms which have blunted colony stimulating factor activity for hematopoietic progenitor cells (HPC). Since GM-CSF and IL-3 receptors share a common receptor beta chain, we investigated if DPP4 truncation of GM-CSF (TGM) or IL-3 (T3) could inhibit the receptor binding and functional activity of the full length (FL) alternate compound (i.e TGM inhibition of FL3 activity or T3 inhibition of FLGM activity) in the factor dependent TF-1 cell line, UCB cells and in in vivo mouse studies. We determined using TF-1 and UCB that both T3 and TGM bound to the receptors with higher affinity than their FL forms and could blunt the receptor binding of the FLGM and FL3. Additionally, TGM and T3 decreased colony formation induced by either FLGM or FL3 in both TF-1, UCB, and primary AML patient cell samples. Strikingly, this inhibition of colony formation did not require a 1:1 ratio of the full length to truncated forms of these cytokines. Rather, approximately 4-10 fold less truncated molecules could be used to efficiently inhibit the colony formation activity of the full length form, even across molecules. In vivo injection of FL, T, or a mixture of FL/T or T/T factors into DPP4 activity knockout mice followed by colony assays showed the TGM and T3 suppresed the effect of FLGM or FL3 on progenitor cell numbers per femur and diminished cycling of hematopoietic progenitor cells as detected by high specificity tritiated thymidine kill assay. Proteomic analysis of the effects of full length and truncated factors (FLGM, FL3, TGM, T3) were performed with TF-1 cells where we detected differential protein regulation by the full length vs truncated factors. After 24 hour treatment with 10ng/ml of FLGM or TGM, TF-1 cells displayed statistically significant (p < .05) differences in 26 proteins of which 17 were higher in the FL vs the T, and 9 higher in the T vs FL treated groups. These proteins included, but were not limited to, cell cycle proteins such as CDK6, HDAC6, as well as signal transduction proteins and redox control proteins such as STAM1 and Glutaredoxin. Additionally, alterations in protein phosphphorylation were detected for TF-1 cells treated for 15 or 30 min with the full length vs truncated IL-3 and GM-CSF proteins. Interestingly, the protein expression or phosphorylation levels were not always decreased by the truncated protein compared to the full length. In some cases, the truncated molecules induced an increase in the protein expression or phosphorylation. These data suggest interesting roles for full length and truncated GM-CSF and IL-3 in both normal and malignant hematopoiesis. Further investigation into the regulation of DPP4, and the roles that full length and truncated factors play during normal and malignant hematopoiesis, are important and will allow for a better understanding of the signficance of DPP4 activity during steady state, stressed, and disease hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2462-2462
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Stefan Giselbrecht ◽  
Patrick Horn ◽  
Anthony D. Ho ◽  
...  

Abstract We previously demonstrated that “stemness” of human hematopoietic progenitor cells (HPC) was maintained in a co-culture setting with a monolayer of human mesenchymal stromal cells (MSC). To simulate and monitor the marrow microenvironment of the HPC niche more precisely we have established a 3D co-culture system based on a proprietary KITChip. The KITChip was developed by the Karlsruhe Institute of Technology (KIT) and represents a unique microchip with defined microwell cavities for 3D cell cultures. Sample acquisition was approved by the local Ethics Committee and informed written consent was obtained from all subjects. MSC were derived from human bone marrow of healthy voluntary donors, and HPC were isolated from umbilical cord blood. Cells were mixed in suspension in a ratio of 3:2 (3x105 MSC and 2x105 HPC) and inoculated into the KITChip, which was subsequently mounted into a microbioreactor. This closed loop setup allowed precise control of medium flow and oxygen saturation. After 1 to 5 days of co-culture, the two cell populations were analyzed by immunostaining, RT2-PCR and colony formation assay. MSC form a complex 3D mesh in the microcavities of the KITChip and were maintained stable for up to 6 weeks. We have demonstrated that HPC were distributed three-dimensionally inside this MSC mesh and could be kept viable in this environment for at least 14 days. A defined proportion of CD34+ HPC adhered to the MSC in the microcavities and built up direct cellular connections to the surrounding MSC. By means of RT2-PCR, we could demonstrate that throughout the whole culture period of 14 days a subpopulation of CD34+/p21+/CXCR4+ cells was maintained in the 3D-environment more efficiently than compared to conventional co-culture with MSC monolayer. This was confirmed by Western blotting after the isolation of both cell populations from the chip. The colony formation assay revealed that the plasticity of the HPC cultivated in the 3D KITChip was nearly the same as that of freshly isolated HPC at day 0, whereas HPC co-cultured on MSC monolayer showed a significant decrease in stem cell plasticity. Further analysis under hypoxic conditions (5% O2) indicated that gene expressions of CD33, CD34, CD38 and CD44 were markedly reduced, while those of CD90, CD105, c-Kit, p21, SDF-1 and Angpt-1 remained stable compared to normoxic culture conditions. This novel model system allows analysis of the major determinants of the niche and the impact of a 3D microenvironment on vital stem cell functions. Early HPC were maintained more efficiently and showed a superior plasticity potential when cultured in the 3D KITChip as compared to conventional 2D co-culture systems. Current studies are in process to define the functional significance of the observed changes in gene expression pattern under hypoxic conditions, which resembles the physiologic milieu of the marrow. Disclosures: Wuchter: ETICHO: Consultancy, Honoraria; Sanofi: Honoraria for lectures Other. Ho:Sanofi-Genzyme: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 7098-7098
Author(s):  
M. Martino ◽  
R. Fedele ◽  
G. Irrera ◽  
G. Messina ◽  
M. Cuzzola ◽  
...  

7098 Background: Allogeneic transplantation of G-CSF-mobilized hematopoietic progenitor cells (HPC) results in rapid and complete engraftment in a large proportion of patients and in relatively fast immune recovery. Methods : We have analyzed by flow cytometry the immune reconstitution in 19 patients (pts) affected by multiple myeloma undergone to allogeneic HPC transplant from HLA-identical related donors after nonmyeloablative conditioning regimen with fludarabine 90 mg/m2 and cyclophosphamide 900 mg/m2. In each patient a comparable number of mononuclear cells, CD3+ T lymphocytes and CD34+ progenitor cells was infused. To evaluate the kinetics of the immune reconstitution, the overall number of total lymphocytes, T, B and NK cells of each patient were assessed before and 1, 2, 3, 6, 12, 18, 24, 30, 36 months after allogeneic HPC transplant. Results: Overall T cell reconstitution was in all the pts at 3 months, since at that time the CD3+ T cell median number was 880 cells/microl (r. 589–1,357). However, in all pts high numbers of CD3+ T cells were achieved at 12 months after transplant (median 1,326 cells/microl, r. 850–2,309). The CD4+ T cell median number was 281 cells/microl (r. 185–433) at 6 months, 391 cells/microl (r. 303–505) at 12 months, 603 cells/microl (r. 433–736) at 18 months. The CD8+ T cell median number was increased from the transplant to 18 months in which it was 1,489 cells/microl (r. 760–1,976). The decrease of CD8+ T cells with the normalization of CD4+/CD8+ ratio was observed at 30 months when CD4+ T cells were 650 cells/microl (r. 370–989) and CD8+ T cells were 690 cells/microl (r. 445–1,743). B cells recovery was observed at 18 months with a median number of 194 cells/microl (r. 40–404). The faster reconstitution was documented for NK cells with a median number of 314 cells/microl (r. 61–647) at 2 months. Conclusions: the complete immune reconstitution in our pts was achieved at 30 months after transplant. Our objective is to evaluate if this slow immune recovery is associated with a high incidence of infectious diseases and a low incidence of chronic GVHD. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document