scholarly journals Characterization of the chemotactic defect in polymorphonuclear leukocytes exposed to influenza virus in vitro

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 351-355
Author(s):  
DL Moore ◽  
EL Mills

The mechanism by which influenza virus interferes with polymorphonuclear leukocyte (PMN) chemotaxis was investigated. Incubation of human PMN with influenza A virus in vitro for 30 minutes significantly decreased PMN migration under agarose in response to N- formyl-methionyl-leucyl-phenylalanine (FMLP) or zymosan-activated serum. Virus-treated PMN tended to aggregate in the under-agarose assay. Aggregation was avoided by using a more dilute PMN suspension in filter assays. Virus treatment significantly decreased migration through 100-micron thick cellulose nitrate filters but had no effect on migration through 10-micron thick polycarbonate filters or on PMN bipolar shape change. Virus was not chemotactic in the polycarbonate filter assay and did not induce shape change in purified PMN. It was concluded that influenza virus did not interfere with the ability of PMN to recognize a chemoattractant, undergo shape change, and move a short distance but did limit the extent of migration. Inhibition could not be explained by chemotactic deactivation, since the virus was not chemotactic.

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 351-355 ◽  
Author(s):  
DL Moore ◽  
EL Mills

Abstract The mechanism by which influenza virus interferes with polymorphonuclear leukocyte (PMN) chemotaxis was investigated. Incubation of human PMN with influenza A virus in vitro for 30 minutes significantly decreased PMN migration under agarose in response to N- formyl-methionyl-leucyl-phenylalanine (FMLP) or zymosan-activated serum. Virus-treated PMN tended to aggregate in the under-agarose assay. Aggregation was avoided by using a more dilute PMN suspension in filter assays. Virus treatment significantly decreased migration through 100-micron thick cellulose nitrate filters but had no effect on migration through 10-micron thick polycarbonate filters or on PMN bipolar shape change. Virus was not chemotactic in the polycarbonate filter assay and did not induce shape change in purified PMN. It was concluded that influenza virus did not interfere with the ability of PMN to recognize a chemoattractant, undergo shape change, and move a short distance but did limit the extent of migration. Inhibition could not be explained by chemotactic deactivation, since the virus was not chemotactic.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 131-138 ◽  
Author(s):  
JS Abramson ◽  
JW Parce ◽  
JC Lewis ◽  
DS Lyles ◽  
EL Mills ◽  
...  

Abstract Depressed chemotactic activity of polymorphonuclear leukocytes (PMNL) infected with influenza virus could be due to changes occurring at the plasma membrane. The present study examined the effect of unopsonized influenza virus on chemotaxis, adherence, receptor binding, shape change, membrane fluidity, and release of specific granules from PMNL. Chemotactic activity of PMNL under-agarose to the chemoattractants, zymosan-activated serum ( ZAS ) and N-formyl-methionyl-leucyl- phenylalanine (fMLP), and adherence of PMNL to a plastic surface were markedly decreased in virus-treated cells as compared to control cells. The binding of fMLP to the PMNL was increased in virus-treated cells compared with control cells. Exposure of cells to virus, ZAS , or fMLP caused 35%-50% of the cells to become bipolar in shape, whereas less than 5% of the cells exposed to buffer became bipolar. Influenza virus did not alter membrane fluidity as measured by electron spin resonance spectroscopy with the probe 5-doxyl stearate. Virus-treated PMNL stimulated with FMLP or Staphylococcus aureus exhibited a marked decrease in the amount of lactoferrin released into phagosomes, onto the cells' outer membrane, and into the extracellular medium as compared to control cells. The possible relationship between inhibition of lysosomal enzyme degranulation and decreased chemotactic activity and adherence of PMNL is discussed.


Science ◽  
2019 ◽  
Vol 363 (6431) ◽  
pp. eaar6221 ◽  
Author(s):  
Maria J. P. van Dongen ◽  
Rameshwar U. Kadam ◽  
Jarek Juraszek ◽  
Edward Lawson ◽  
Boerries Brandenburg ◽  
...  

Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 131-138
Author(s):  
JS Abramson ◽  
JW Parce ◽  
JC Lewis ◽  
DS Lyles ◽  
EL Mills ◽  
...  

Depressed chemotactic activity of polymorphonuclear leukocytes (PMNL) infected with influenza virus could be due to changes occurring at the plasma membrane. The present study examined the effect of unopsonized influenza virus on chemotaxis, adherence, receptor binding, shape change, membrane fluidity, and release of specific granules from PMNL. Chemotactic activity of PMNL under-agarose to the chemoattractants, zymosan-activated serum ( ZAS ) and N-formyl-methionyl-leucyl- phenylalanine (fMLP), and adherence of PMNL to a plastic surface were markedly decreased in virus-treated cells as compared to control cells. The binding of fMLP to the PMNL was increased in virus-treated cells compared with control cells. Exposure of cells to virus, ZAS , or fMLP caused 35%-50% of the cells to become bipolar in shape, whereas less than 5% of the cells exposed to buffer became bipolar. Influenza virus did not alter membrane fluidity as measured by electron spin resonance spectroscopy with the probe 5-doxyl stearate. Virus-treated PMNL stimulated with FMLP or Staphylococcus aureus exhibited a marked decrease in the amount of lactoferrin released into phagosomes, onto the cells' outer membrane, and into the extracellular medium as compared to control cells. The possible relationship between inhibition of lysosomal enzyme degranulation and decreased chemotactic activity and adherence of PMNL is discussed.


2014 ◽  
Vol 95 (5) ◽  
pp. 1033-1042 ◽  
Author(s):  
Blanca García-Barreno ◽  
Teresa Delgado ◽  
Sonia Benito ◽  
Inmaculada Casas ◽  
Francisco Pozo ◽  
...  

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al., Proc Natl Acad Sci USA, 104 , 6283–6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.


2006 ◽  
Vol 135 (3) ◽  
pp. 386-391 ◽  
Author(s):  
M. MASE ◽  
M. ETO ◽  
K. IMAI ◽  
K. TSUKAMOTO ◽  
S. YAMAGUCHI

We characterized eleven H9N2 influenza A viruses isolated from chicken products imported from China. Genetically they were classified into six distinct genotypes, including five already known genotypes and one novel genotype. This suggested that such multiple genotypes of the H9N2 virus have possibly already become widespread and endemic in China. Two isolates have amino-acid substitutions that confer resistance to amantadine in the M2 region, and this supported the evidence that this mutation might be a result of the wide application of amantadine for avian influenza treatment in China. These findings emphasize the importance of surveillance for avian influenza virus in this region, and of quarantining imported chicken products as potential sources for the introduction of influenza virus.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Laura V. Ashton ◽  
Robert L. Callan ◽  
Sangeeta Rao ◽  
Gabriele A. Landolt

Infection of dogs with canine influenza virus (CIV) is considered widespread throughout the United States following the first isolation of CIV in 2004. While vaccination against influenza A infection is a common and important practice for disease control, antiviral therapy can serve as a valuable adjunct in controlling the impact of the disease. In this study, we examined the antiviral activity of nitazoxanide (NTZ) and tizoxanide (TIZ) against three CIV isolatesin vitro. NTZ and TIZ inhibited virus replication of all CIVs with 50% and 90% inhibitory concentrations ranging from 0.17 to 0.21 μMand from 0.60 to 0.76 μM, respectively. These results suggest that NTZ and TIZ are effective against CIV and may be useful for treatment of canine influenza in dogs but further investigation of thein vivoefficacy against CIV as well as the drug's potential for toxicity in dogs is needed.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Hien Thi Tuong ◽  
Ngoc Minh Nguyen ◽  
Haan Woo Sung ◽  
Hyun Park ◽  
Seon-Ju Yeo

In July 2018, a novel avian influenza virus (A/Mandarin duck/South Korea/KNU18-12/2018(H11N9)) was isolated from Mandarin ducks in South Korea. Phylogenetic and molecular analyses were conducted to characterize the genetic origins of the H11N9 strain. Phylogenetic analysis indicated that eight gene segments of strain H11N9 belonged to the Eurasian lineages. Analysis of nucleotide sequence similarity of both the hemagglutinin (HA) and neuraminidase (NA) genes revealed the highest homology with A/duck/Kagoshima/KU57/2014 (H11N9), showing 97.70% and 98.00% nucleotide identities, respectively. Additionally, internal genes showed homology higher than 98% compared to those of other isolates derived from duck and wild birds. Both the polymerase acidic (PA) and polymerase basic 1 (PB1) genes were close to the H5N3 strain isolated in China; whereas, other internal genes were closely related to that of avian influenza virus in Japan. A single basic amino acid at the HA cleavage site (PAIASR↓GLF), the lack of a five-amino acid deletion (residue 69–73) in the stalk region of the NA gene, and E627 in the polymerase basic 2 (PB2) gene indicated that the A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) isolate was a typical low-pathogenicity avian influenza. In vitro viral replication of H11N9 showed a lower titer than H1N1 and higher than H9N2. In mice, H11N9 showed lower adaptation than H1N1. The novel A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) isolate may have resulted from an unknown reassortment through the import of multiple wild birds in Japan and Korea in approximately 2016–2017, evolving to produce a different H11N9 compared to the previous H11N9 in Korea (2016). Further reassortment events of this virus occurred in PB1 and PA in China-derived strains. These results indicate that Japanese- and Chinese-derived avian influenza contributes to the genetic diversity of A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) in Korea.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Dalya Al-Saad ◽  
Misal Giuseppe Memeo ◽  
Paolo Quadrelli

Influenza virus flu A H1N1 still remains a target for its inhibition with small molecules. Fleeting nitrosocarbonyl intermediates are at work in a short-cut synthesis of carbocyclic nucleoside analogues. The strategy of the synthetic approaches is presented along with thein vitroantiviral tests. The nucleoside derivatives were tested for their inhibitory activity against a variety of viruses. Promising antiviral activities were found for specific compounds in the case of flu A H1N1.


Sign in / Sign up

Export Citation Format

Share Document