scholarly journals Biosynthesis and processing of lactoferrin in bone marrow cells, a comparison with processing of myeloperoxidase

Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 441-447
Author(s):  
I Olsson ◽  
M Lantz ◽  
AM Persson ◽  
K Arnljots

The processing and intracellular transport of lactoferrin of the neutrophil specific granules was investigated by biosynthetic labeling with (14C)leucine of bone marrow cells from healthy individuals and patients with chronic myeloid leukemia. Lactoferrin was precipitated with antilactoferrin serum and the immunoprecipitates were analyzed by sodium dodecyl sulfate (SDS), polyacrylamide gel electrophoresis (PAGE) followed by fluorography. In contrast to myeloperoxidase of azurophil granules, lactoferrin was not synthesized as a larger precursor, and it was not found to be phosphorylated. The transfer to granules of newly synthesized lactoferrin was demonstrated in pulse-chase labeling experiments followed by centrifugation of cell homogenate in a Percoll gradient. Monensin, which exchanges protons for Na+ and NH4+ cation, blocked the transfer completely, indicating a need for acidification mechanisms. Unlike myeloperoxidase, newly synthesized lactoferrin rapidly became resistant to endoglycosidase H, indicating a transport through the medial and transcisternae of the Golgi apparatus with conversion of “high mannose” to “complex” oligosaccharide side chains. Intracellular transfer of some major neutrophil azurophil and specific granule constituents is obviously regulated differently. Lactoferrin seems to be processed like proteins destined for secretion, while myeloperoxidase is processed more or less like lysosomal enzymes.

Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 441-447 ◽  
Author(s):  
I Olsson ◽  
M Lantz ◽  
AM Persson ◽  
K Arnljots

Abstract The processing and intracellular transport of lactoferrin of the neutrophil specific granules was investigated by biosynthetic labeling with (14C)leucine of bone marrow cells from healthy individuals and patients with chronic myeloid leukemia. Lactoferrin was precipitated with antilactoferrin serum and the immunoprecipitates were analyzed by sodium dodecyl sulfate (SDS), polyacrylamide gel electrophoresis (PAGE) followed by fluorography. In contrast to myeloperoxidase of azurophil granules, lactoferrin was not synthesized as a larger precursor, and it was not found to be phosphorylated. The transfer to granules of newly synthesized lactoferrin was demonstrated in pulse-chase labeling experiments followed by centrifugation of cell homogenate in a Percoll gradient. Monensin, which exchanges protons for Na+ and NH4+ cation, blocked the transfer completely, indicating a need for acidification mechanisms. Unlike myeloperoxidase, newly synthesized lactoferrin rapidly became resistant to endoglycosidase H, indicating a transport through the medial and transcisternae of the Golgi apparatus with conversion of “high mannose” to “complex” oligosaccharide side chains. Intracellular transfer of some major neutrophil azurophil and specific granule constituents is obviously regulated differently. Lactoferrin seems to be processed like proteins destined for secretion, while myeloperoxidase is processed more or less like lysosomal enzymes.


2009 ◽  
Vol 33 (1) ◽  
pp. 170-173 ◽  
Author(s):  
Fermin M. Sanchez-Guijo ◽  
Jesus M. Hernandez ◽  
Eva Lumbreras ◽  
Patricia Morais ◽  
Carlos Santamaría ◽  
...  

Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2337-2342
Author(s):  
IM Clauss ◽  
B Vandenplas ◽  
MG Wathelet ◽  
C Dorval ◽  
A Delforge ◽  
...  

Recombinant human interferon-alpha (IFN-alpha) can induce a hematologic remission in patients with chronic myeloid leukemia. However, some patients are resistant and others develop late resistance to the IFN- alpha treatment. To understand the molecular mechanism of this resistance, we have analyzed the expression of 10 IFN-inducible genes in the cells of three resistant patients, two responsive patients, and six healthy controls. Northern blot hybridizations showed that all the genes were induced in in vitro IFN-alpha treated peripheral blood cells of the patients and healthy controls. These genes were also inducible in peripheral blood and bone marrow cells of two out of two resistant patients administered an injection of IFN-alpha. We conclude that the resistance to the IFN-alpha treatment of the chronic myeloid leukemia patients we studied is not due to (1) the absence of induction of any of the 10 IFN-inducible genes we studied, including the low-molecular- weight 2′-5′oligoadenylate synthetase; (2) the presence of an antagonist of IFN-alpha in the peripheral blood or bone marrow cells; and (3) the presence of neutralizing anti-IFN-alpha antibodies.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1618-1623 ◽  
Author(s):  
A Godard ◽  
H Gascan ◽  
J Naulet ◽  
MA Peyrat ◽  
Y Jacques ◽  
...  

Abstract We previously described a lymphokine termed HILDA (for human interleukin DA) produced by T-lymphocyte alloreactive clones after antigenic stimulation. This factor sustains the growth of a murine IL3- sensitive cell line (DA2). In addition, HILDA is a potent activator of eosinophils and displays a burst-promoting activity on human bone marrow. In the present study, HILDA was purified to homogeneity from T- cell clone supernatant using successively sequential concentration, concanavalin A (ConA) affinity chromatography with differential elution (alpha-D glucopyranoside and alpha-D mannopyranoside), high-performance liquid chromatography (HPLC) gel filtration and reverse-phase HPLC. The pure material appeared as a 38-kd glycoprotein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing or nonreducing conditions. Biologic activity could be recovered from SDS- PAGE gel slices corresponding to the 38-kd band. We conclude from the specificity of the DA-2 cell line and biochemical characteristics described that this lymphokine is different from other known factors produced by human T lymphocytes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 400-400 ◽  
Author(s):  
Wolfgang Kern ◽  
Daniela Voskova ◽  
Claudia Schoch ◽  
Wolfgang Hiddemann ◽  
Susanne Schnittger ◽  
...  

Abstract Guiding antileukemic treatment in patients with acute myeloid leukemia (AML) is increasingly based on levels of minimal residual disease (MRD) which can be quantified with high sensitivity by multiparameter flow cytometry (MFC). The optimum checkpoint for determination of MRD during the course of therapy, however, has not yet been determined. We applied MFC using a comprehensive panel of antibodies to identify leukemia-associated aberrant immunophenotypes (LAIPs) at diagnosis and to quantify MRD by individually selected antibody combinations. The prognostic impact of MRD levels was assessed in comparison to cytogenetics and age. Patients received double induction, consolidation, and maintenance therapies and underwent allogeneic stem cell transplantation if they were younger than 60 years and had a matched related donor. In 286 patients with newly diagnosed and untreated AML MFC-based assessment for the presence of LAIP has been performed. The median percentage of LAIP-positive bone marrow cells at diagnosis was 16.04% (range, 2.54%–76.14%). All individual LAIPs were applied to 26 normal bone marrow samples to estimate sensitivity based on the median percentages of LAIP-positive normal bone marrow cells which ranged from 0.00% to 1.01% (median, 0.02%). A total of 550 follow-up samples has been analyzed in these patients at different checkpoints (CP1, up to day 21 after start of therapy, n=85; CP2, day 22–60, n=122; CP3, day 61–120, n=158; CP4, day 121–365, n=137; CP5, after day 365, n=48). In order to adjust for differences in the percentages of LAIP-positive bone marrow cells at diagnosis the logarithmic difference (LD) between diagnosis and follow-up was calculated for each follow-up sample. The median LDs at the respective checkpoints were: CP1, 2.02; CP2, 2.29; CP3, 2.39; CP4, 2.53; and CP5, 2.81. Separation of patients according to the respective median LDs resulted in differences in event-free survival (EFS; CP1: 21.1 vs. 9.1 months, p=0.0711; CP2: 14.2 vs. 9.3 months, p=0.0095; CP3: 30.9 vs. 13.5 months, p=0.0055; CP4: median not reached vs. 14.1 months, p<0.0001; CP5: median not reached vs. 22.5 months, p=0.0001) and overall survival (OS; CP3: median not reached vs. 21.6 months, p=0.0332; CP4: 90% vs. 53% at 2 years, p=0.0058). Cox analysis using the LDs at the different checkpoints as continuous variables confirmed the prognostic impact on EFS (CP2, p=0.002; CP3, p=0.0003; CP4, p<0.0001; CP5, p<0.0001) and revealed an impact also on OS (CP3, p=0.003; CP4, p=0.001; CP5, p=0.029). Cox regression analysis taking into consideration cytogenetics and age as covariates proved the independent prognostic impact of LD at checkpoints 2 to 5 on both EFS and OS with the exception of LD at checkpoint 2 and OS. In fact, LD at checkpoint 5 was the only parameter independently related to EFS and OS. These data suggest that quantification of MRD by MFC in AML results in powerful and independent prognostic parameters. In particular during the first year of treatment MRD levels provide important prognostic information. Clincal trials should use MRD-based stratification in order to assess the efficacy of early treatment intensification in high-risk AML patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2861-2861
Author(s):  
Cong Peng ◽  
Yiguo Hu ◽  
Francis Y. Lee ◽  
Shaoguang Li

Abstract The BCR-ABL inhibitor imatinib mesylate is the current approved treatment for Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML). While this agent is effective in the chronic phase of CML, it is less effective in advanced disease (acelerated phase or blast crisis), and resistance to imatinib is an issue at all stages of disease, particularly advanced. Resistance is mediated primarily by BCR-ABL mutations, although other mechanisms have also been implicated. Another key issue with imatinib therapy is that molecular remission in imatinib-treated CML patients is difficult to achieve, leaving patients at risk of relapse. We have previously observed that imatinib significantly prolongs survival of CML mice, but is not curative (Hu et al, Nature Genetics36[5]:453–461, 2004). We hypothesize that this can be attributed to the inability of imatinib to completely kill CML stem cells. We identified that BCR-ABL-expressing Lin-c-KIT+Sca-1+ bone marrow cells are CML stem cells in mice. We tested whether BMS-214662 (which has been shown to have an inhibitory effect on growth of non-proliferating cancer cells) (Lee et al, Proceedings of the AACR42:260s, 2001) reduces leukemia stem cell populations in CML mice. Donor bone marrow cells from C57BL/6 mice were transduced with P210BCR-ABL-IRES-GFP retrovirus, followed by transplantation into lethally irradiated C57BL/6 recipient mice. Eight days after transplantation, BMS-214662 was given orally once a day at a dose of 300 mg/kg for 7 days. Bone marrow cells from the treated CML mice were then analyzed by FACS for CML stem cells (GFP+Lin-c-Kit+Sca-1+). CML mice treated with placebo, dasatinib (a novel, oral, multi-targeted kinase inhibitor that targets BCR-ABL and SRC family kinases) 10 mg/kg, twice daily (BID), BMS-214662, or dasatinib 10 mg/kg BID in combination with BMS-214662. Numbers of leukemia stem cells per bone were significantly lower in mice treated with BMS-214662 alone, dasatinib alone, or both BMS-214662 and dasatinib, compared with placebo-treated mice. Among different treatments, the combination of BMS-214662 and dasatinib had the strongest inhibitory effect on CML stem cells. Inhibition of the leukemia stem cells by dasatinib could be due to its inhibitory effect on BCR-ABL or SRC kinases, whereas BMS-214662 must function through other mechanisms. BMS-214662 is also a farnesyl transferase inhibitor (FTI), which reduces Ras activation. However, our control experiment showed that other FTIs did not inhibit proliferation of non-proliferating cancer cells (data not shown). This suggests that BMS-214662 inhibits CML stem cells through unknown mechanisms. In summary, BMS-214662 is a potent inhibitor of CML stem cells, and combinatorial use of BMS-214662 and dasatinib may provide more durable responses, and potentially a curative therapy for CML patients. Given the proven activity of dasatinib against a spectrum of imatinib-resistant BCR-ABL mutations (O’Hare, et al. Cancer Res65[11]:4500–5, 2005; Shah et al, Science, 305:399, 2004), and the apparent activity of dasatinib against stem cells in vivo shown here, this combination could potentially suppress the emergence of resistance, further adding to the durability of response.


Sign in / Sign up

Export Citation Format

Share Document