scholarly journals Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay

Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 117-122
Author(s):  
K Watari ◽  
S Asano ◽  
N Shirafuji ◽  
H Kodo ◽  
K Ozawa ◽  
...  

In order to better understand the patho-physiologic role of granulocyte colony-stimulating factor (G-CSF), we estimated its serum levels in healthy persons and patients with various disorders, using a newly developed enzyme immunoassay (Motojima et al). In 49 of 56 normal healthy persons (88%), the levels were beneath the sensitivity of the assay (less than 30 pg/mL), while in the remaining seven healthy persons, the levels ranged from 33 to 163 pg/mL. On the other hand, nine of 11 patients (82%) with idiopathic aplastic anemia (AA), one patient with Fanconi's anemia, six of 12 patients (50%) with myelodysplastic syndrome (MDS), five of 12 patients (42%) with acute leukemia without any blast cells in the blood (M4: one, M5: one, L1: one, and L2: two), six of 18 patients (33%) with chronic myeloid leukemia (CML), one of two patients with chronic lymphoid leukemia (CLL), two of four patients with lung cancer, one patient with cyclic neutropenia, two of seven patients with malignant lymphoma, and four patients with acute infection had G-CSF levels ranging from 46 pg/mL to greater than 2,000 pg/mL. Interestingly, a reverse correlation between blood neutrophil count and serum G-CSF level was clearly demonstrated for aplastic anemia (r = -.8169, P less than .01). Moreover, it was found that the G-CSF level rose during the neutropenic phase of cyclic neutropenia and after chemotherapy or bone marrow transplantation (BMT) in three patients with leukemia; also high G-CSF levels were positively correlated to blood neutrophil counts in some cases of infectious disorders and lung cancer. The cellular sources and the mechanisms for production and secretion of circulating G-CSF were not investigated in this study, but the data presented here strongly indicate that G-CSF plays an important role as a circulating neutrophilopoietin.

Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 117-122 ◽  
Author(s):  
K Watari ◽  
S Asano ◽  
N Shirafuji ◽  
H Kodo ◽  
K Ozawa ◽  
...  

Abstract In order to better understand the patho-physiologic role of granulocyte colony-stimulating factor (G-CSF), we estimated its serum levels in healthy persons and patients with various disorders, using a newly developed enzyme immunoassay (Motojima et al). In 49 of 56 normal healthy persons (88%), the levels were beneath the sensitivity of the assay (less than 30 pg/mL), while in the remaining seven healthy persons, the levels ranged from 33 to 163 pg/mL. On the other hand, nine of 11 patients (82%) with idiopathic aplastic anemia (AA), one patient with Fanconi's anemia, six of 12 patients (50%) with myelodysplastic syndrome (MDS), five of 12 patients (42%) with acute leukemia without any blast cells in the blood (M4: one, M5: one, L1: one, and L2: two), six of 18 patients (33%) with chronic myeloid leukemia (CML), one of two patients with chronic lymphoid leukemia (CLL), two of four patients with lung cancer, one patient with cyclic neutropenia, two of seven patients with malignant lymphoma, and four patients with acute infection had G-CSF levels ranging from 46 pg/mL to greater than 2,000 pg/mL. Interestingly, a reverse correlation between blood neutrophil count and serum G-CSF level was clearly demonstrated for aplastic anemia (r = -.8169, P less than .01). Moreover, it was found that the G-CSF level rose during the neutropenic phase of cyclic neutropenia and after chemotherapy or bone marrow transplantation (BMT) in three patients with leukemia; also high G-CSF levels were positively correlated to blood neutrophil counts in some cases of infectious disorders and lung cancer. The cellular sources and the mechanisms for production and secretion of circulating G-CSF were not investigated in this study, but the data presented here strongly indicate that G-CSF plays an important role as a circulating neutrophilopoietin.


1996 ◽  
Vol 40 (4) ◽  
pp. 988-991 ◽  
Author(s):  
H Takatani ◽  
H Soda ◽  
M Fukuda ◽  
M Watanabe ◽  
A Kinoshita ◽  
...  

Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is effective in countering chemotherapy-induced neutropenia. However, serum rhG-CSF levels cannot be maintained throughout the course of rhG-CSF therapy. The drop in serum rhG-CSF levels may vary with the duration of rhG-CSF administration or with the circulating neutrophil counts. We investigated the relationship between serum G-CSF levels and circulating neutrophil counts and the pharmacokinetics of rhG-CSF for patients with lung cancer who had been treated with myelosuppressive chemotherapy and then with subcutaneous rhG-CSF (lenograstim, 2 micrograms per kg of body weight per day). Twelve patients were randomly assigned to four groups with different rhG-CSF therapy schedules. Serum G-CSF levels were measured by an enzyme immunoassay method. Serum G-CSF levels during the rhG-CSF therapy greatly exceeded endogenous G-CSF levels and were mainly due to the presence of exogenous rhG-CSF rather than increased levels of endogenous G-CSF. Despite the duration of rhG-CSF administration, serum G-CSF levels during rhG-CSF therapy were inversely correlated with circulating neutrophil counts (r2 = 0.73, P < 0.0001). The value for the area under the concentration-time curve of rhG-CSF on the day of neutrophilia was lower than that on the day of neutropenia (P < 0.05). Our results suggest that the fall in serum G-CSF levels during rhG-CSF therapy may result from increased clearance and/or decreased absorption of rhG-CSF, two processes related to circulating neutrophil counts.


1996 ◽  
Vol 14 (4) ◽  
pp. 351-357 ◽  
Author(s):  
Xin-Hai Pei ◽  
Yoichi Nakanishi ◽  
Koichi Takayama ◽  
Jun Yatsunami ◽  
Feng Bai ◽  
...  

2009 ◽  
Vol 45 (2) ◽  
pp. 110-111 ◽  
Author(s):  
Koichi Sugunoto ◽  
Atsushi Togawal ◽  
Kohei Miyazono ◽  
Katsuro Itoh ◽  
Masamichi Amano ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kimihisa Mizoguchi ◽  
Kazuhisa Kaneshiro ◽  
Makoto Kubo ◽  
Yoshihiko Sadakari ◽  
Yoshizo Kimura ◽  
...  

Abstract Background Granulocyte-colony stimulating factor (G-CSF)-producing tumors can cause leukocytosis despite an absence of infection. G-CSF-producing tumors have been reported in various organs such as the lung, esophagus, and stomach but rarely in the breast. We report a case of G-CSF-producing malignant phyllodes tumor of the breast. Case presentation An 84-year-old woman visited our hospital complaining of a lump in her left breast without fever and pain. Laboratory tests revealed elevated white blood cell (WBC) count and G-CSF levels. A malignant tumor of the breast was diagnosed by core needle biopsy. We performed a total mastectomy and sentinel lymph node biopsy. The tumor was identified as a G-CSF-producing malignant phyllodes tumor. Within 7 days after surgery, the patient’s WBC count and G-CSF level had decreased to normal levels. She is alive without recurrence 13 months after surgery. Conclusions We encountered a rare case of G-CSF-producing malignant phyllodes tumor of the breast. PET–CT revealed diffuse accumulation of FDG in the bone. Phyllodes tumors need to be differentiated from bone metastasis, lymphoma, and leukemia. We must be careful to not mistake this type of tumor for bone marrow metastasis.


Sign in / Sign up

Export Citation Format

Share Document