scholarly journals Candidacidal activity of the neutrophil myeloperoxidase system can be protected from excess hydrogen peroxide by the presence of ammonium ion

Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 1045-1049 ◽  
Author(s):  
MA Beilke ◽  
C Collins-Lech ◽  
PG Sohnle

Excessive concentrations of hydrogen peroxide inhibit the neutrophil myeloperoxidase system, presumably by inactivating the hypochlorous acid produced by this system. Ammonium ion generated by neutrophils and other cells can react with hypochlorous acid to produce monochloramine, an oxidant with good microbicidal activity, but relative resistance to inactivation by other compounds. In an assay based on the oxidation of 5-thio-2-nitrobenzoic acid, hydrogen peroxide reacted more readily with sodium hypochlorite (used as a source of hypochlorous acid) than with monochloramine. Also, in this assay Candida albicans yeast inactivated the oxidant activity of hypochlorous acid more completely than they did that of monochloramine. The killing of Candida by sodium hypochlorite, as determined in a standard colony count microbicidal assay, was inhibited by equimolar and greater concentrations of hydrogen peroxide; killing of this organism by monochloramine was not affected by a tenfold excess concentration of hydrogen peroxide. In microbicidal assays using 4 mU of myeloperoxidase and optimal or excessive concentrations of hydrogen peroxide or glucose and glucose oxidase to generate hydrogen peroxide, the excessive concentrations inhibited killing of Candida, but not Staphylococcus aureus. The inhibition of Candida killing could be reversed by addition of ammonium ion to convert hypochlorous acid to monochloramine. These results indicate that for certain organisms such as C albicans, conversion of hypochlorous acid to monochloramine by reactions with ammonium ion may extend the range of hydrogen peroxide concentrations under which killing by the myeloperoxidase system can occur by protecting the necessary microbicidal oxidants from inactivation by excess hydrogen peroxide.

Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 1045-1049 ◽  
Author(s):  
MA Beilke ◽  
C Collins-Lech ◽  
PG Sohnle

Abstract Excessive concentrations of hydrogen peroxide inhibit the neutrophil myeloperoxidase system, presumably by inactivating the hypochlorous acid produced by this system. Ammonium ion generated by neutrophils and other cells can react with hypochlorous acid to produce monochloramine, an oxidant with good microbicidal activity, but relative resistance to inactivation by other compounds. In an assay based on the oxidation of 5-thio-2-nitrobenzoic acid, hydrogen peroxide reacted more readily with sodium hypochlorite (used as a source of hypochlorous acid) than with monochloramine. Also, in this assay Candida albicans yeast inactivated the oxidant activity of hypochlorous acid more completely than they did that of monochloramine. The killing of Candida by sodium hypochlorite, as determined in a standard colony count microbicidal assay, was inhibited by equimolar and greater concentrations of hydrogen peroxide; killing of this organism by monochloramine was not affected by a tenfold excess concentration of hydrogen peroxide. In microbicidal assays using 4 mU of myeloperoxidase and optimal or excessive concentrations of hydrogen peroxide or glucose and glucose oxidase to generate hydrogen peroxide, the excessive concentrations inhibited killing of Candida, but not Staphylococcus aureus. The inhibition of Candida killing could be reversed by addition of ammonium ion to convert hypochlorous acid to monochloramine. These results indicate that for certain organisms such as C albicans, conversion of hypochlorous acid to monochloramine by reactions with ammonium ion may extend the range of hydrogen peroxide concentrations under which killing by the myeloperoxidase system can occur by protecting the necessary microbicidal oxidants from inactivation by excess hydrogen peroxide.


2014 ◽  
Vol 35 (11) ◽  
pp. 1414-1416 ◽  
Author(s):  
Abhishek Deshpande ◽  
Thriveen S. C. Mana ◽  
Jennifer L. Cadnum ◽  
Annette C. Jencson ◽  
Brett Sitzlar ◽  
...  

OxyCide Daily Disinfectant Cleaner, a novel peracetic acid/hydrogen peroxide–based sporicidal disinfectant, was as effective as sodium hypochlorite for in vitro killing of Clostridium difficile spores, methicillin-resistant Staphylococcus aureus, and vancomcyin-resistant enterococci. OxyCide was minimally affected by organic load and was effective in reducing pathogen contamination in isolation roomsInfect Control Hosp Epidemiol 2014;35(11):1414–1416


2010 ◽  
Vol 76 (10) ◽  
pp. 3135-3142 ◽  
Author(s):  
K. Toté ◽  
T. Horemans ◽  
D. Vanden Berghe ◽  
L. Maes ◽  
P. Cos

ABSTRACT Bacteria and matrix are essential for the development of biofilms, and assays should therefore target both components. The current European guidelines for biocidal efficacy testing are not adequate for sessile microorganisms; hence, alternative discriminatory test protocols should be used. The activities of a broad range of biocides on Staphylococcus aureus and Pseudomonas aeruginosa biofilms were evaluated using such in vitro assays. Nearly all selected biocides showed a significant decrease in S. aureus biofilm viability, with sodium hypochlorite and peracetic acid as the most active biocides. Only hydrogen peroxide and sodium hypochlorite showed some inhibitory effect on the matrix. Treatment of P. aeruginosa biofilms was roughly comparable to that of S. aureus biofilms. Peracetic acid was the most active on viable mass within 1 min of contact. Isopropanol ensured a greater than 99.999% reduction of P. aeruginosa viability after at least 30 min of contact. Comparable to results with S. aureus, sodium hypochlorite and hydrogen peroxide markedly reduced the P. aeruginosa matrix. This study clearly demonstrated that despite their aspecific mechanisms of action, most biocides were active only against biofilm bacteria, leaving the matrix undisturbed. Only hydrogen peroxide and sodium hypochlorite were active on both the biofilm matrix and the viable mass, making them the better antibiofilm agents. In addition, this study emphasizes the need for updated and standardized guidelines for biofilm susceptibility testing of biocides.


2012 ◽  
Vol 80 (4) ◽  
pp. 1546-1553 ◽  
Author(s):  
Hideaki Nakamura ◽  
Jun Fang ◽  
Hiroshi Maeda

ABSTRACTd-Amino acid oxidase (DAO) is a hydrogen peroxide-generating enzyme that uses ad-amino acid as a substrate. We hypothesized that DAO may protect against bacterial infection, because hydrogen peroxide is one of the most important molecules in the antibacterial defense systems in mammals. We show here that DAO suppressed the growth ofStaphylococcus aureusin a manner that depended on the concentration of DAO andd-amino acidin vitro. Addition of catalase abolished the bacteriostatic activity of DAO. Although DAO plusd-Ala showed less bactericidal activity, addition of myeloperoxidase (MPO) greatly enhanced the bactericidal activity of DAO. Furthermore, DAO was able to utilize bacterial lysate, which containsd-Ala derived from peptidoglycan; this could produce hydrogen peroxide with, in the presence of myeloperoxidase, formation of hypochlorous acid. This concerted reaction of DAO and MPO led to the bactericidal action.In vivoexperiments showed that DAO−/−(mutant) mice were more susceptible toS. aureusinfection than were DAO+/+(wild-type) mice. These results suggest that DAO, together with myeloperoxidase, may play an important role in antibacterial systems in mammals.


Nitric Oxide ◽  
2008 ◽  
Vol 18 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Lisa M. Landino ◽  
Catherine B. Mall ◽  
Joshua J. Nicklay ◽  
Sarah K. Dutcher ◽  
Katherine L. Moynihan

2015 ◽  
Vol 31 (1) ◽  
pp. 37-44
Author(s):  
Junichi ODO ◽  
Masahiko INOGUCHI ◽  
Hiroyuki AOKI ◽  
Yuto SOGAWA ◽  
Masahiro NISHIMURA

Author(s):  
Bing Han ◽  
Xiaoyu Han ◽  
Mengmeng Ren ◽  
Yilin You ◽  
Jicheng Zhan ◽  
...  

Diseases caused by harmful microorganisms pose a serious threat to human health. Safe and environment-friendly disinfectants are, therefore, essential in preventing and controlling such pathogens. This study aimed to investigate the antimicrobial activity and mechanism of a novel hydrogen peroxide and silver (H 2 O 2 -Ag + ) complex (HSC) in combatting Staphylococcus aureus ATCC 29213, Escherichia coli O157:H7 NCTC 12900 and Salmonella typhimurium SL 1344. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against S. aureus were found to be 0.014 % H 2 O 2 -3.125 mg/L Ag + , while 0.028 % H 2 O 2 -6.25 mg/L Ag + for both E. coli and S. typhimurium . Results of the growth curve assay and time-kill trial suggest that the HSC could inhibit the growth of the tested bacteria, as 99.9 % of viable cells were killed following treatment at the 1 MIC for 3 h. Compared with Oxytech D10 disinfectant (0.25 % H 2 O 2 -5 mg/L Ag + ), the HSC exhibited better antibacterial efficacy at a lower concentration (0.045 % H 2 O 2 -10 mg/L Ag + ). The mechanism of antibacterial action of HSC was found including the disruption of the bacterial cell membrane, followed by entry into the bacteria cell to reduce intracellular adenosine triphosphate (ATP) concentration, and inhibit the activity of antioxidases, superoxide dismutase (SOD) and catalase (CAT). The enhanced bactericidal effect of hydrogen peroxide combined with silver indicates a potential for its application in environmental disinfection, particularly in the food industry.


Sign in / Sign up

Export Citation Format

Share Document