scholarly journals Phenotypic heterogeneity of TDT+ cells in the blood and bone marrow: implications for surveillance of residual leukemia [see comments]

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 312-319
Author(s):  
RG Smith ◽  
RL Kitchens

Terminal deoxynucleotidyl transferase (TdT) is a useful marker for normal lymphocyte precursors and acute lymphoblastic leukemia (ALL). Our previous studies, however, have shown that for monitoring minimal residual disease in the circulation, assay for TdT alone is not sufficiently specific to distinguish leukemia cells from the background of rare normal blood TdT+ cells. In an attempt to increase specificity for leukemic cells, we have used double and triple immunophenotypic analysis to characterize normal circulating and bone marrow TdT+ cells. Overall, normal TdT+ cells were about 1000-fold more frequent in the marrow than in the blood. More than 75% of TdT+ cells in both the blood and marrow expressed the CD34, CD22, and HLA-DR antigens. However, circulating TdT+ cells infrequently expressed CD19 (4.5%) and CD9 (2.3%), compared with their marrow counterparts (74% and 47%, respectively). The brightly staining CD10+ phenotype, frequently associated with ALL blasts, was significantly less common among normal blood (5.7%) than marrow (31%) TdT+ cells. Although T-lineage markers were rarely expressed on TdT+ cells in either site, CD7+ cells were far more prevalent within the circulating TdT+ subset (4%) than among the marrow population (less than 0.2%). The results suggest a selective release of lineage-uncommitted and/or thymus-destined TdT+ cells from the marrow into the circulation. Moreover, since CD19, CD9, and high- density CD10 are frequently found on ALL blasts, staining for these markers on TdT+ cells in the circulation should improve the specificity of assay for residual common ALL cells. Likewise, assay for CD5+ and possibly CD7+ TdT+ cells in either marrow or blood should provide a very sensitive method of detection of T-ALL blasts.

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 312-319 ◽  
Author(s):  
RG Smith ◽  
RL Kitchens

Abstract Terminal deoxynucleotidyl transferase (TdT) is a useful marker for normal lymphocyte precursors and acute lymphoblastic leukemia (ALL). Our previous studies, however, have shown that for monitoring minimal residual disease in the circulation, assay for TdT alone is not sufficiently specific to distinguish leukemia cells from the background of rare normal blood TdT+ cells. In an attempt to increase specificity for leukemic cells, we have used double and triple immunophenotypic analysis to characterize normal circulating and bone marrow TdT+ cells. Overall, normal TdT+ cells were about 1000-fold more frequent in the marrow than in the blood. More than 75% of TdT+ cells in both the blood and marrow expressed the CD34, CD22, and HLA-DR antigens. However, circulating TdT+ cells infrequently expressed CD19 (4.5%) and CD9 (2.3%), compared with their marrow counterparts (74% and 47%, respectively). The brightly staining CD10+ phenotype, frequently associated with ALL blasts, was significantly less common among normal blood (5.7%) than marrow (31%) TdT+ cells. Although T-lineage markers were rarely expressed on TdT+ cells in either site, CD7+ cells were far more prevalent within the circulating TdT+ subset (4%) than among the marrow population (less than 0.2%). The results suggest a selective release of lineage-uncommitted and/or thymus-destined TdT+ cells from the marrow into the circulation. Moreover, since CD19, CD9, and high- density CD10 are frequently found on ALL blasts, staining for these markers on TdT+ cells in the circulation should improve the specificity of assay for residual common ALL cells. Likewise, assay for CD5+ and possibly CD7+ TdT+ cells in either marrow or blood should provide a very sensitive method of detection of T-ALL blasts.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 833-833
Author(s):  
Shotaro Iwamoto ◽  
Keichiro Mihara ◽  
James R. Downing ◽  
Ching-Hon Pui ◽  
Dario Campana

Abstract Owing to their low expression of asparagine synthetase (ASNS), acute lymphoblastic leukemia (ALL) cells have low asparagine biosynthesis and are exquisitely sensitive to asparagine depletion caused by L-asparaginase. Differences in susceptibility to L-asparaginase have been attributed to the varying levels of ASNS mRNA in leukemic cells, but recent studies have challenged this concept. We found that among leukemic cells from 288 children with ALL analyzed by Affymetrix U133A GeneChip, ASNS levels were higher in patients with T-lineage ALL (P <0.001), and lower in patients with TEL-AML1 (P = 0.033) or hyperdiploid >50 chromosomes (P <0.001) B-lineage ALL. However, ASNS expression was not significantly related to response to remission induction therapy as determined by minimal residual disease measurements on day 46 of treatment. ALL cells grow in direct contact with bone marrow mesenchymal cells, which form the microenvironmental niches essential for their expansion. We observed that ASNS levels in mesenchymal cells were, on average, 20 times higher than those expressed by ALL cells by GeneChip analysis, real-time PCR and Western blotting with an anti-ASNS specific monoclonal antibody (gift of Dr. M. Kilberg, U. of Florida). When ALL cell lines (380, REH, RS4;11) were exposed to L-asparaginase in the presence of mesenchymal cells, cytotoxicity significantly decreased. To test whether the protective effect of mesenchymal cells was related to their ASNS expression, we used RNA interference (RNAi) to stably downregulate ASNS expression. This profoundly diminished their capacity to protect ALL cells from L-asparaginase cytotoxicity. We then investigated whether enforced expression of ASNS in mesenchymal cells using a MSCV retroviral vector could augment their protective capacity. Overexpression of ASNS significantly augmented the capacity of mesenchymal cells to protect ALL cells from L-asparaginase cytotoxicity. ASNS expression in mesenchymal cells was related not only to their capacity to protect ALL cells lines but also primary ALL cells obtained from 5 patients with newly diagnosed ALL. We found that mesenchymal cells secreted asparagine and that levels of asparagine in culture supernatants collected from mesenchymal cells after 24 hours of culture were directly related to levels of ASNS expression in the cells; asparagine in supernatants of mesenchymal cells treated with the RNAi target sequence was nearly undetectable. In line with these results, the protective effects of mesenchymal cells were also detectable when ALL cells were placed on a microporous membrane that prevented contact with mesenchymal, and when they were cultured with mesenchymal cell-conditioned medium. By contrast, addition of a mixture of mesenchymal cell-derived cytokines (IL-1 alpha and beta, IL-3, IL-6, IL-7, IL-11, SCF and Flt3 ligand) instead of mesenchymal cell-conditioned medium had no effect on L-asparaginase cytotoxicity. These results reveal an unexpected mechanism of drug resistance in ALL and indicate that microenvironmental niches can form a safe haven for leukemia cells, thus sustaining minimal residual disease. The role of mesenchymal cells in the response to other anti-leukemic drugs requires further investigation. A better understanding of the molecular mechanisms involved in the interaction between ALL cells and the bone marrow microenvironment may ultimately lead to innovative ways to enhance anti-leukemia therapy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5205-5205
Author(s):  
Bibi F. S. S. Scharff ◽  
Signe Modvig ◽  
Maria Thastrup ◽  
Mette Levinsen ◽  
Matilda Degn ◽  
...  

Introduction: The overall survival of children with ALL (Acute Lymphoblastic Leukemia) has improved markedly over the last decade, yet relapse occurs in about 20% of patients. The spread of leukemic blasts to the Central Nervous System (CNS) and increased resistance to therapy due to cell adherence within the Bone Marrow (BM) or CNS constitutes major challenges to treatment. For these reasons, adhesion molecules governing the homing and adhesion of leukemic cells are perceived to be of extraordinary importance, both as potential biomarkers and therapeutic targets. Integrins constitute a large family of heterodimeric receptors composed of alpha and beta subunits, which play important roles during homing and migration of normal leucocytes by facilitating adhesion to both stromal cells and components of the extracellular matrix. Increased expression of CD49d (integrin subunit α4) is a marker for adverse prognosis in ALL and recently, CD49f (integrin subunit α6) was shown to facilitate metastasis of ALL xenografts to the central nervous system in mice (Yao H et al., Nature 2018). Methods Previous studies of integrins in BCP-ALL have focused on individual alpha integrins in xenograft models and were based on limited numbers of clinical samples. The present study was based on a large number of Danish pediatric BCP-ALL patients stratified between 2012-2018 using Minimal Residual Disease (MRD) according to the Nordic NOPHO-2008 protocol (Toft N et al., Eur J Haematol 2013). Diagnostic BM samples were subjected to flowcytometric analysis (FCM) of CD49f (n=246) and CD49d (n=135), using a backbone of lineage-specific B-cell markers (CD45, CD10, CD19, CD20). Leukemic blasts were detected in Cerebrospinal Fluid (CSF) using high-sensitivity FCM and the following markers CD45, CD10, CD19, CD20, CD34 and CD38 (n = 246, with matching BM and CSF samples). Results Our data provided us with a unique possibility to identify the role of CD49d and CD49f with respect to minimal residual disease (MRD) at the end of induction therapy (day 29), which is considered the most important prognostic factor in paediatric lymphoblastic leukemia. We found that CD49f was more highly expressed in patients with MRD ≥ 0,1% at day 29 than patients with MRD < 0,1% (p = 0,01), whereas no difference was seen with respect to CD49d. We also investigated the correlation between white blood cell (WBC) and surface expression of CD49d and CD49f in diagnostic BM blasts with respect to different cytogenetic subtypes. A Kruskall-Wallis test showed that the expression varies according to genetic subtypes (p‹0.0001). We found that the expression of CD49d was highest among the high hyperdiploid and iAMP21 (intrachromosomal amplification of chromosome 21) patients, whereas the expression of CD49f was highest among the t12,21 and iAMP21 patients. Notably, the expression of CD49f was inversely correlated to WBC (r=0,17, p=0.01), which was most pronounced among the patients in the B-other cytogenetic subgroup defined as leukaemia that could not be classified into the existing cytogenetic groups (r=0,42, P‹0.0001). In case of strong adherence to BM, lower levels of leukemic blasts might be expected in circulation resulting in high MRD but low WBC. Therefore, both MRD and WBC data are consistent with a prominent adhesive role of CD49f within BM. In contrast, we found significantly lower CD49f surface expression in diagnostic BM samples in patients with leukemic blasts within CSF (p=0.0297). Conclusions: Recently, Yao et al. (2018) showed that ALL cells in circulation are unable to breach the blood-brain barrier in mice and instead employ CD49f (integrin α6) to migrate into the CNS along vessels that connect vertebral or calvarial bone marrow and the subarachnoid space. Potentially, this mechanism could account for cases of ALL relapse within CNS. Our work shows a strong association between high MRD and the expression of CD49f which is a function that would have been anticipated for CD49d due to previous works with ALL and CLL. Furthermore, we found significantly lower CD49f surface expression in leukemic blasts within the BM in patients with CSF involvement and therefore no support for the recently proposed role of CD49f in facilitating the spread of leukemic cells to the CNS. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1424-1424
Author(s):  
Peter Rhein ◽  
Richard Ratei ◽  
Rita Mitlohner ◽  
Martin Schrappe ◽  
Wolf-Dieter Ludwig ◽  
...  

Abstract Assessment of minimal residual disease (MRD) has become central to the clinical management of patients with acute lymphoblastic leukemia (ALL). Among the methods available for MRD monitoring, flow cytometry (FCM), which relies on the presence of leukemia-associated aberrant immunophenotype, holds great promise for clinical application. However, the major antigens used for FCM-MRD identification (CD10, CD34, CD45, CD20, CD19, TdT) undergo expression changes during therapy. Moreover, the presence of normal hematopoietic progenitors, in particular in the regenerating bone marrow after treatment, negatively impacts the sensitivity and specificity of MRD detection. Recently, we analysed genome-wide gene expression in blasts isolated from peripheral blood of pediatric precursor B-cell (PBC)-ALL patients after one week of therapy (day 8 cells). Expression changes observed in the day 8 cells pointed to several cell surface molecules, whose expression has not been characteristic for B-lineage hematopoiesis. In particular CD11b surface antigen has been frequently up-regulated in the day 8 cells. In the present study, we addressed expression dynamics of CD11b in PBC-ALL at clinically significant MRD timepoints during induction therapy (days 15, 33 and 78; ALL-BFM protocol). To this end, a CD11b specific antibody has been included into a nine-color, single-tube panel (antibodies to CD19, CD20, CD10, CD34, CD45, CD58, CD3, and a nuclear stain Syto16), which has been applied in order to detect residual blasts among 106 cells in bone marrow specimens from patients with PBC-ALL. At day 15, mean expression of CD11b (in MESF units) has been significantly increased if compared with leukemic cells at diagnosis (9600+/−2800 vs 850+/−140; p=0.005). The up-regulation by more than 10-fold has been found in 8 of 24 cases (33%), and has reached, in part, very high levels (eg, 450 MESF vs 49500 MESF at diagnosis and day 15, respectively). This indicates that CD11b expression changes are due to a therapy-induced gene up-regulation rather than to a clonal selection during clinical treatment. At the later timepoints of induction therapy, 7 of 22 patients (day 33) and 2 of 18 patients (day 78) were MRD positive. CD11b expression, if increased at day 15, retained its high values on day 33 (7900+/− 3200 MESF, 6 patients) and on day 78 (15100 MESF, 1 patient). Importantly, in contrast to leukemic cells, their normal CD19+CD10+ counterparts in both, non-leukemic and ALL bone marrow samples, remained CD11b negative. This difference has facilitated a reliable discrimination of normal and leukemic blasts in the MRD positive cases with regenerating bone marrow at day 78. In conclusion, treatment-induced up-regulation of CD11b in PBC-ALL has a promising potential as a novel marker, which may considerably improve specificity of FCM-MRD detection in bone marrow samples with a complex hematopoietic background.


Folia Medica ◽  
2016 ◽  
Vol 58 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Hasan A. Burnusuzov ◽  
Mariya I. Spasova ◽  
Mariana A. Murdjeva ◽  
Angelina A. Stoyanova ◽  
Ivan N. Mumdziev ◽  
...  

AbstractEarly clearance of leukemic cells during induction therapy of childhood acute lymphoblastic leukemia (ALL) is a basis for treatment optimization. Currently, the most widely used methods for the detection of minute residual malignant cells in the bone marrow and/or peripheral blood, minimal residual disease (MRD), are PCR and flow cytometry (FCM). Immunophenotypic modulation (IM) is a well known factor that can hamper the accurate FCM analysis.Aim: To report the IM detected by 8-color FCM during the BFM-type remission induction in 24 consecutive MRD-positive samples of children with B-cell precursor ALL and the possible implications for MRD detection.Patients and methods: Between 2010 and 2012 we prospectively followed up the MRD on days 15 and 33 of induction treatment in bone marrow (BM) samples and on day 8 in peripheral blood (PB). The IM was assessed by comparative analyses of the changes in the mean fluorescence intensity of 7 highly relevant antigens expressed by the leukemic cells and normal B-lymphocytes.Results: IM occurred, to different extents, in all analyzed day 15 BM and in most day 33 BM samples. Statistically significant changes in the MFI-levels of four CDs expressed by the leukemic blasts were observed: downmodulation of CD10, CD19 and CD34 and upmodulation of CD20. No changes in the expression of CD38, CD58 and CD45 were noticed.Conclusions: Measuring the MRD by standardized 8-color flow cytometry helps improve the monitoring of the disease, leading to better therapeutic results. However, the IM of the different antigens expressed by the leukemic blasts should be taken into consideration and cautiously analyzed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie L. Rellick ◽  
Gangqing Hu ◽  
Debra Piktel ◽  
Karen H. Martin ◽  
Werner J. Geldenhuys ◽  
...  

AbstractB-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.


Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 2984-2990 ◽  
Author(s):  
Stella M. Davies ◽  
Michael J. Borowitz ◽  
Gary L. Rosner ◽  
Kristin Ritz ◽  
Meenakshi Devidas ◽  
...  

Abstract Minimal residual disease (MRD) as a marker of antileukemic drug efficacy is being used to assess risk status and, in some cases, to adjust the intensity of therapy. Within known prognostic categories, the determinants of MRD are not known. We measured MRD by flow cytometry at day 8 (in blood) and at day 28 (in bone marrow) of induction therapy in more than 1000 children enrolled in Pediatric Oncology Group therapy protocols 9904, 9905, and 9906. We classified patients as “best risk” if they had cleared MRD by day 8 of therapy and as “worst risk” if they had MRD remaining in bone marrow at day 28, and tested whether MRD was related to polymorphisms in 16 loci in genes hypothesized to influence response to therapy in acute lymphoblastic leukemia (ALL). After adjusting for known prognostic features such as presence of the TEL-AML1 rearrangement, National Cancer Institute (NCI) risk status, ploidy, and race, the G allele of a common polymorphism in chemokine receptor 5 (CCR5) was associated with more favorable MRD status than the A allele (P = .009, logistic regression), when comparing “best” and “worst” risk groups. These data are consistent with growing evidence that both acquired and host genetics influence response to cancer therapy.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1951-1956
Author(s):  
ED Ball ◽  
J McDermott ◽  
JD Griffin ◽  
FR Davey ◽  
R Davis ◽  
...  

Monoclonal antibodies (MoAbs) have been prepared recently that recognize the three cell-surface receptors for the Fc portion of immunoglobulin (Ig), termed Fc gamma RI (MoAb 32.2), Fc gamma R II (MoAb IV-3), and Fc gamma R III (MoAb 3G8) that are expressed on selected subsets of non-T lymphocyte peripheral blood leukocytes. In the blood, Fc gamma R I is expressed exclusively on monocytes and macrophages, Fc gamma R II on granulocytes, mononuclear phagocytes, platelets, and B cells, and Fc gamma R III on granulocytes and natural killer (NK) cells. We have examined the expression of these molecules on normal bone marrow (BM) cells and on leukemia cells from the blood and/or BM in order to determine their normal ontogeny as well as their distribution on leukemic cells. BM was obtained from six normal volunteers and from 170 patients with newly diagnosed acute leukemia. Normal BM cells were found to express Fc gamma R I, II, and III with the following percentages: 40%, 58%, and 56%, respectively. Cell sorting revealed that both Fc gamma R I and Fc gamma R II were detectable on all subclasses of myeloid precursors as early as myeloblasts. Cell sorting experiments revealed that 66% of the granulocyte-monocyte colony-forming cells (CFU-GM) and 50% of erythroid burst-forming units (BFU-E) were Fc gamma R II positive with only 20% and 28%, respectively, of CFU-GM and BFU-E were Fc gamma R I positive. Acute myeloid leukemia (AML) cells expressed the three receptors with the following frequency (n = 146): Fc gamma R I, 58%; Fc gamma R II, 67%; and Fc gamma R III, 26% of patients. Despite the fact that Fc gamma R I is only expressed on monocytes among blood cells, AML cells without monocytoid differentiation (French-American-British [FAB]M1, M2, M3, M6) were sometimes positive for this receptor. However, Fc gamma R I was highly correlated with FAB M4 and M5 morphology (P less than .001). Fc gamma R II was also correlated with FAB M4 and M5 morphology (P = .003). Cells from 11 patients with acute lymphoblastic leukemia were negative for Fc gamma R I, but six cases were positive for Fc gamma R II and III (not the same patients). These studies demonstrate that Ig Fc gamma R are acquired during normal differentiation in the BM at or before the level of colony-forming units. In addition, we show that acute leukemia cells commonly express Fc gamma R.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1951-1956 ◽  
Author(s):  
ED Ball ◽  
J McDermott ◽  
JD Griffin ◽  
FR Davey ◽  
R Davis ◽  
...  

Abstract Monoclonal antibodies (MoAbs) have been prepared recently that recognize the three cell-surface receptors for the Fc portion of immunoglobulin (Ig), termed Fc gamma RI (MoAb 32.2), Fc gamma R II (MoAb IV-3), and Fc gamma R III (MoAb 3G8) that are expressed on selected subsets of non-T lymphocyte peripheral blood leukocytes. In the blood, Fc gamma R I is expressed exclusively on monocytes and macrophages, Fc gamma R II on granulocytes, mononuclear phagocytes, platelets, and B cells, and Fc gamma R III on granulocytes and natural killer (NK) cells. We have examined the expression of these molecules on normal bone marrow (BM) cells and on leukemia cells from the blood and/or BM in order to determine their normal ontogeny as well as their distribution on leukemic cells. BM was obtained from six normal volunteers and from 170 patients with newly diagnosed acute leukemia. Normal BM cells were found to express Fc gamma R I, II, and III with the following percentages: 40%, 58%, and 56%, respectively. Cell sorting revealed that both Fc gamma R I and Fc gamma R II were detectable on all subclasses of myeloid precursors as early as myeloblasts. Cell sorting experiments revealed that 66% of the granulocyte-monocyte colony-forming cells (CFU-GM) and 50% of erythroid burst-forming units (BFU-E) were Fc gamma R II positive with only 20% and 28%, respectively, of CFU-GM and BFU-E were Fc gamma R I positive. Acute myeloid leukemia (AML) cells expressed the three receptors with the following frequency (n = 146): Fc gamma R I, 58%; Fc gamma R II, 67%; and Fc gamma R III, 26% of patients. Despite the fact that Fc gamma R I is only expressed on monocytes among blood cells, AML cells without monocytoid differentiation (French-American-British [FAB]M1, M2, M3, M6) were sometimes positive for this receptor. However, Fc gamma R I was highly correlated with FAB M4 and M5 morphology (P less than .001). Fc gamma R II was also correlated with FAB M4 and M5 morphology (P = .003). Cells from 11 patients with acute lymphoblastic leukemia were negative for Fc gamma R I, but six cases were positive for Fc gamma R II and III (not the same patients). These studies demonstrate that Ig Fc gamma R are acquired during normal differentiation in the BM at or before the level of colony-forming units. In addition, we show that acute leukemia cells commonly express Fc gamma R.


1989 ◽  
Vol 7 (3) ◽  
pp. 338-343 ◽  
Author(s):  
M Bregni ◽  
S Siena ◽  
A Neri ◽  
R Bassan ◽  
T Barbui ◽  
...  

We have developed an assay for the detection of malignant residual cells in the bone marrow from patients with B- or T-lineage acute lymphoblastic leukemia (ALL) in clinical remission. This assay involves an immune selection step followed by immunoglobulin or T-cell receptor gene rearrangement analysis and allows the detection of one contaminating tumor cell out of 1,000 normal bone marrow cells. We have examined the bone marrow of 11 patients with adult ALL in remission over a 24-month period. Five patients relapsed in the bone marrow and one in the CNS. The assay allowed the detection of minimal residual disease in four of five patients that subsequently relapsed in the bone marrow, 1.5 to 9 months before the relapse became morphologically and clinically manifest. Residual disease was not found in the bone marrow from patients in continuous remission and from the single patient who relapsed in the CNS. We conclude that the ability of the assay described here to detect minimal residual disease with high specificity can provide information for further understanding of the biology of ALL and hopefully for the clinical management of patients with this disease.


Sign in / Sign up

Export Citation Format

Share Document