scholarly journals Interleukin-6 and granulocyte-macrophage colony-stimulating factor are candidate growth factors for chronic myelomonocytic leukemia cells

Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1472-1476 ◽  
Author(s):  
MP Everson ◽  
CB Brown ◽  
MB Lilly

Previous studies suggest that malignant cells from some patients with myeloid leukemias produce colony-stimulating factors (CSFs) that can function as autocrine growth factors in vitro. We have examined the roles of interleukin-6 (IL-6) and granulocyte-macrophage CSF (GM-CSF) in the proliferation of myeloid leukemia cells. IL-6 activity was assessed in conditioned medium (CM) from myeloid leukemia cell cultures or cell lysates using IL-6-dependent KD83 and 7TD1 murine cell lines. Media conditioned by cells from patients with chronic myelomonocytic leukemia (CMMoL), but not by normal monocytes, chronic myelogenous leukemia (CML), or acute myelogenous leukemia (AML) cells, contained substantial levels (50 to 1,000 U/10(6) cells) of IL-6. The IL-6 content of CM correlated directly with donor peripheral blood WBC count. CM from two of five CMMoL samples also contained greater than 350 pg/mL GM-CSF. Moreover, CMMoL cells spontaneously formed colonies in semisolid medium. CMMoL colony formation could be partially inhibited by antibodies to IL-6 or GM-CSF, whereas combination of these antibodies gave additive, and nearly complete (greater than 93%), inhibition of spontaneous colony formation. Cell lysates from uncultured CMMoL cells from one patient contained abundant GM-CSF protein but no detectable IL-6. These data suggest that IL-6 and GM-CSF act in vitro as autocrine growth factors for CMMoL cells, and that CMMoL cells in vivo may represent a GM-CSF-dependent autocrine growth system.

Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1472-1476 ◽  
Author(s):  
MP Everson ◽  
CB Brown ◽  
MB Lilly

Abstract Previous studies suggest that malignant cells from some patients with myeloid leukemias produce colony-stimulating factors (CSFs) that can function as autocrine growth factors in vitro. We have examined the roles of interleukin-6 (IL-6) and granulocyte-macrophage CSF (GM-CSF) in the proliferation of myeloid leukemia cells. IL-6 activity was assessed in conditioned medium (CM) from myeloid leukemia cell cultures or cell lysates using IL-6-dependent KD83 and 7TD1 murine cell lines. Media conditioned by cells from patients with chronic myelomonocytic leukemia (CMMoL), but not by normal monocytes, chronic myelogenous leukemia (CML), or acute myelogenous leukemia (AML) cells, contained substantial levels (50 to 1,000 U/10(6) cells) of IL-6. The IL-6 content of CM correlated directly with donor peripheral blood WBC count. CM from two of five CMMoL samples also contained greater than 350 pg/mL GM-CSF. Moreover, CMMoL cells spontaneously formed colonies in semisolid medium. CMMoL colony formation could be partially inhibited by antibodies to IL-6 or GM-CSF, whereas combination of these antibodies gave additive, and nearly complete (greater than 93%), inhibition of spontaneous colony formation. Cell lysates from uncultured CMMoL cells from one patient contained abundant GM-CSF protein but no detectable IL-6. These data suggest that IL-6 and GM-CSF act in vitro as autocrine growth factors for CMMoL cells, and that CMMoL cells in vivo may represent a GM-CSF-dependent autocrine growth system.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 209-216 ◽  
Author(s):  
EM Macmillan ◽  
TJ Gonda

Abstract Murine myeloid cells can be transformed in vitro by infection with recombinant retroviruses carrying activated myb genes. While these myb- transformed hematopoietic cells (MTHCs) can proliferate continuously in culture, they exhibit several characteristics of progenitor cells of the granulocyte-macrophage (GM) lineage, including an absolute dependence on hematopoietic growth factors (HGFs) such as GM colony- stimulating factor (GM-CSF) for survival and growth. Whereas we have previously shown that MTHCs respond synergistically to certain combinations of HGFs, we report here that MTHCs apparently require two HGFs for proliferation, because GM-CSF alone appears insufficient to promote growth when MTHCs are cultured at very low densities. However, proliferation can be stimulated by either increasing the density at which MTHCs are cultured (implying the production of an autocrine growth factor) or by the presence of a feeder layer of irradiated fibroblasts. We find that the activity of such feeder layers is greatest when the MTHCs are allowed to contact them directly; and by using mutant fibroblast lines, that it depends on the production of CSF- 1, but not Steel factor (SLF). In contrast, the autocrine factor appears not to be either CSF-1 or SLF, and the possibility is raised that it may represent a novel HGF activity. Potential implications of these results for normal and leukemic hematopoiesis are discussed.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2246-2255 ◽  
Author(s):  
E Estey ◽  
PF Thall ◽  
H Kantarjian ◽  
S O'Brien ◽  
CA Koller ◽  
...  

Abstract We gave 56 patients with newly diagnosed acute myelogenous leukemia (AML) granulocyte-macrophage colony-stimulating factor (GM-CSF) 20 or 125 micrograms/m2 once daily subcutaneously before (for up to 8 days or until GM-CSF-related complications developed) and during, or only during (patients presenting with blast counts greater than 50,000 or other leukemia-related complications) ara-C (1.5 g/m2 daily x 4 by continuous infusion) and daunorubicin (45 mg/m2 daily x 3) chemotherapy. Because results seemed independent of GM-CSF schedule, we compared results in these 56 patients with results in 176 patients with newly diagnosed AML given the same dose and schedule of ara-C without GM-CSF (110 patients ara-C alone, 66 patients ara-C + amsacrine or mitoxantrone). Comparison involved fitting a logistic regression model predicting probability of complete remission (CR) and a Cox regression model to predict survival (most patients in all three studies were dead) with treatment included as a covariate in both analyses. After adjusting for other prognostically significant covariates [presence of an antecedent hematologic disorder, an Inv (16), t(8;21), or abnormalities of chromosomes 5 and/or 7, performance status, age, bilirubin], treatment with ara-C + daunorubicin + GM-CSF was predictive of both a lower CR rate and a lower survival probability. There were no treatment-covariate interactions, suggesting that the negative effect of this GM-CSF treatment regime was not an artifact of some imbalance in patient characteristics. The unadjusted Kaplan-Meier hazard rate of the ara-C + daunorubicin + GM-CSF group was not uniquely high during the initial 4 weeks after start of therapy, but was highest among the three treatment groups throughout weeks 5 to 16, suggesting that the negative effect of this treatment was not caused by acute toxicity. Patients who did not enter CR with this treatment tended to have persistent leukemia rather than prolonged marrow aplasia, suggesting that this treatment and, in particular, GM-CSF may increase resistance of myeloid leukemia cells to chemotherapy. To date, relapse rates are similar in all three groups (P = .43) (as are survival rates once patients are in CR) but much of the remission duration data is heavily censored, unlike the survival data. Our results suggest caution in the use of GM-CSF to sensitize myeloid leukemia cells to daunorubicin + ara- C chemotherapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2636-2636
Author(s):  
Anna Kalota ◽  
Alan M. Gewirtz

Abstract Treatment of thrombocytopenia, whether autoimmune, secondary to marrow failure, or iatrogenic, can become problematic. Stimulation of endogenous megakaryocyte (MEG) development might be an effective strategy and it was originally hoped that this could be accomplished with thrombopoietin (Tpo), the natural ligand of the thrombopoietin receptor (TpoR) and regulator of MEG development. When formulated Tpo proved immunogenic, development of small molecule TpoR agonists (TpoRA) was undertaken. In course of investigating the biological effects, and mechanism of action, of SB559457 (a nonpeptidyl, hydrazone class, TpoRA supplied by GlaxoSmithKline (GSK), Collegeville, PA) we found that the molecule robustly stimulated human megakaryocytopoiesis in vitro. In anticipation of TpoRA use in the treatment of patients with hematologic malignancies, we also evaluated SB559457’s effect on human leukemia cell (HLC) growth in vitro since it is known that HLCs may express TpoR. Specifically, we examined the effects of SB559457 on samples obtained from 21 patients with AML, and 7 with ALL. Surprisingly, SB559457 not only failed to stimulate HLC growth, it proved toxic to primary acute myelogenous leukemia (AML). In 20 of 21 primary AML samples exposed to SB559457 (5μM) a large fraction (70–90%) of cells died between days 3 and 6 of culture, while untreated control cells survived. No significant effects on cell growth or viability were observed in the ALL patient samples. To investigate the mechanism(s) of AML cell killing, we examined signaling cascades initiated by SB559457 compared to recombinant human Tpo (rhTpo), which had no apparent effect on AML cell growth. Initially, we employed N2C-Tpo cells (a Tpo dependent megakaryoblastic cell line that express TpoR) and focused on kinases known to be phosphorylated after TpoR activation; STAT5, ERK, p70S6, and ribosomal kinase S6. When N2C-Tpo cells were stimulated with rhTpo (2.8μM, 30 min) all these kinases were highly phosphorylated. In contrast, none were phosphorylated in SB559457 (5μM, 30min) stimulated cells. Normal human CD34+ marrow cells were next examined using the same experimental conditions. In contrast to N2C-Tpo cells, ERK, and p70S6 kinases were both phosphorylated after exposure to SB559457 but STAT5 remained unphosphorylated. Since AML cells may require STAT5 activation for growth, we hypothesized that perturbation of STAT5 activation might be involved in the apoptotic mechanism. The molecular consequences of differential signaling were then pursued by Affymetrix GeneChip analysis. Remarkably, in 5 separate primary AML cell samples stimulated for 6 hours with either Tpo or SB559457 we found a statistically significant difference in expression in only 2 of 22000 genes represented on the chips: GAPDH and Redd1. Both of these genes are induced in stressed cells undergoing apoptosis. In addition, stimulation of primary AML cells with SB559457 resulted in increased phosphorylation of p70S6/S6 kinases, both downstream targets of mTOR kinase. Accordingly, we hypothesize that SB559457 mediated activation of mTOR pathway leads to a stress response in primary myeloid leukemia cells as reflected by the increased expression of Redd1 and GAPDH. Further investigation of this pathway, and the leukemic cell response to SB559457 exposure may lead to development of novel strategies for the treatment of myeloid leukemias.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2246-2255
Author(s):  
E Estey ◽  
PF Thall ◽  
H Kantarjian ◽  
S O'Brien ◽  
CA Koller ◽  
...  

We gave 56 patients with newly diagnosed acute myelogenous leukemia (AML) granulocyte-macrophage colony-stimulating factor (GM-CSF) 20 or 125 micrograms/m2 once daily subcutaneously before (for up to 8 days or until GM-CSF-related complications developed) and during, or only during (patients presenting with blast counts greater than 50,000 or other leukemia-related complications) ara-C (1.5 g/m2 daily x 4 by continuous infusion) and daunorubicin (45 mg/m2 daily x 3) chemotherapy. Because results seemed independent of GM-CSF schedule, we compared results in these 56 patients with results in 176 patients with newly diagnosed AML given the same dose and schedule of ara-C without GM-CSF (110 patients ara-C alone, 66 patients ara-C + amsacrine or mitoxantrone). Comparison involved fitting a logistic regression model predicting probability of complete remission (CR) and a Cox regression model to predict survival (most patients in all three studies were dead) with treatment included as a covariate in both analyses. After adjusting for other prognostically significant covariates [presence of an antecedent hematologic disorder, an Inv (16), t(8;21), or abnormalities of chromosomes 5 and/or 7, performance status, age, bilirubin], treatment with ara-C + daunorubicin + GM-CSF was predictive of both a lower CR rate and a lower survival probability. There were no treatment-covariate interactions, suggesting that the negative effect of this GM-CSF treatment regime was not an artifact of some imbalance in patient characteristics. The unadjusted Kaplan-Meier hazard rate of the ara-C + daunorubicin + GM-CSF group was not uniquely high during the initial 4 weeks after start of therapy, but was highest among the three treatment groups throughout weeks 5 to 16, suggesting that the negative effect of this treatment was not caused by acute toxicity. Patients who did not enter CR with this treatment tended to have persistent leukemia rather than prolonged marrow aplasia, suggesting that this treatment and, in particular, GM-CSF may increase resistance of myeloid leukemia cells to chemotherapy. To date, relapse rates are similar in all three groups (P = .43) (as are survival rates once patients are in CR) but much of the remission duration data is heavily censored, unlike the survival data. Our results suggest caution in the use of GM-CSF to sensitize myeloid leukemia cells to daunorubicin + ara- C chemotherapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2379-2379
Author(s):  
Francesco Onida ◽  
Clara Ricci ◽  
Federica Servida ◽  
Elisa Fermo ◽  
Mauro Molteni ◽  
...  

Abstract Chronic myelomonocytic leukemia (CMML) is a heterogeneous hematological malignancy, which shows features of both myelodysplastic and myeloproliferative disorders. It has poor prognosis due to the lack of effective treatment and very little is known about its pathogenesis. A point mutation in the RAS genes is detected in 20 to 35% of patients with CMML, with higher percentage among patients with proliferative variant of the disease (MP-CMML, WBC > 13 x 109/L). The expression of Bcl-2 family proteins, which are key regulators of the mitochondrial-mediated pathway of apoptosis, have been reported as being altered in MDS and other hematological disorders. However, the role of these proteins has not been systematically investigated in CMML. In this study, we evaluated by Western Blotting the expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins in peripheral blood mononuclear cells (PBMNC) from 21 CMML patients and 8 age-matched healthy controls. We also investigated the presence of point mutations within codons 12, 13, and 61 of N- and K-RAS by sequencing analysis, and assessed in vitro colony growth of PBMNC with and without growth factors (GFs) [SCF, GM-CSF, IL-3, Epo]. Our series included 10 males and 11 females, with a median age of 74 years. Median WBC value was 9.2 x 109/L (range 3.2 to 17.2), while differential showed median monocyte values of 27.5% and 2.0 x 109/L. Six out of the 21 patients had MP-CMML. All patients but one had normal karyotype. A point mutation within N-RAS (G12D) was detected in two patients, both with MP-CMML. Spontaneous growth was observed both in normal controls and in CMML (median 19 and 14 CFU-GM/105 MNCs, respectively), with a higher number of CFU-GM in the MP-CMML than in the dysplastic subgroup (MD-CMML) (46 vs 12). After addition of GFs, we observed an increase of colony number in all groups. Interestingly, in vitro colony growth was remarkably higher in the two patients with mutant N-RAS than in patients with wild type RAS, especially after the addition of GFs (200 vs 57, p <0.05). The expression of Bax was higher in CMML than in the control group (3.81 vs 1.39, p = 0.07), whereas Bcl-2 was lower (0.88 vs 1.41, p = .16), even though these differences were not statistically significant. No differences were observed between subgroups of patients with MD- and MP-CMML. When the Bcl-2/Bax ratio was calculated, we observed lower values in CMML than in normal controls (0.27 vs 1.08, p <0.01). In the two patients with mutated RAS, Bcl-2 expression was significantly higher than in patients with wt-RAS (2.07 vs 0.75, p <0.05). Noteworthy, Bcl-2 expression in patients with mutant RAS was also higher than in the control group. In conclusion, our data suggest a deregulation of mechanisms controlling apoptosis in CMML, with no significant differences between MD and MP variants. The finding of higher Bcl-2 expression in patients with mutant RAS suggests a possible cooperation of this anti-apoptotic protein with RAS-activated intracellular pathways, warranting further confirmation in larger CMML series. In agreement with previous reports, we observed higher in vitro spontaneous growth in MP-CMML than in MD-CMML. Hypersensitivity to GFs (possibly GM-CSF) in cells from patients with mutant RAS is suggested and merits further investigation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2746-2746
Author(s):  
Koichiro Suemori ◽  
Hiroshi Fujiwara ◽  
Toshiki Ochi ◽  
Masaki Yasukawa

Abstract [Purpose & background] CML66 is a newly identified cancer-testis antigen by SEREX method in post-transplant CML patient who had a second remission by DLI for relapse. Thus CML66 is initially considered to be implicated in graft-versus-leukemia (GvL) effect against CML, while its’ physiological function remains unknown. The identification by SEREX means its’ immunogenicity to produce antibody, however the T-cell response specific for CML66, particularly its’ ability to generate cytotoxic T-lymphocyte (CTL) against leukemia still remains to be verified. Thus we explored a CTL-epitope of CML66 to induce epitope-specific CTL which can kill human leukemia cells, because of the exploration of its’ clinical applicability as an anticancer vaccine for the immunotherapy. [Methods] At first, we synthesized a variety of CML66-derived 9 aminoacid peptides (9 mer) that had computedly-predicted high binding affinity to HLA-A*2402 molecule. CD8+ T lymphocytes from an HLA-A*2402+healthy donor were co-cultured with autologous monocyte-derived mature dendritic cells (mDCs). CD8+T lymphocytes were repeatedly stimulated with peptide-loaded mDCs. Thereafter, the target epitope-specificity of growing cells was examined by a standard 51Cr-release assay. Additionally, the blocking tests by using anti-HLA class I and anti-class II monoclonal antibody (mo.ab.) were conducted to confirm its’ HLA-A*2402-restricted fashion. Next, CML66 mRNA expression level of target cells including myeloid leukemia cell line cells and primary leukemia cells was examined by real-time semi-quantitative PCR (RQ-PCR). The relative expression level of CML66 mRNA was determined by comparative Ct method. [Result] We identified two CML66-derived 9 mer epitopes with high binding affinity to HLA-A*2402 measured by using HLA-A*2402 gene transfected T2 (T2-A24) cell. One of 2 epitopes, the epitope of CML66; aa70–78: WIQDSVYYI generated the epitope-specific CTL, in vitro, and those CTL exerted anti-leukemia activity against human myeloid leukemia cell line cells in an HLA-A*2402-restricted fashion, but not any cytotoxicity against normal cells. Furthermore, the HLA-A*2402 restriction was confirmed by blocking test by HLA-class I and II mo.ab. Next CML66 mRNA expression level was revealed high in myeloid leukemia cell line cells but low in normal cells, which were compared to that of K562 cell line cell. In primay leukemia cells, acute myelogenous leukemia(AML) cells and acute lymphoblastic leukemia(ALL) cells showed the high expression level of CML66 mRNA. Regarding to the FAB classification of AML, the expression level of CML66 mRNA tended to be higher in subsets ranging from M1 to M4, particularly M2 cells. Even by small number, it was of interest that the expression level of CML66 mRNA in primary chronic myelogenous leukemia (CML) cells was high in cells from blastic phase, but low in cells from chronic phase. This finding may suggest the correlation between CML66 and growth activity of tumor cells. [Conclusion] We identified the novel HLA-A*2402 restricted CTL-epitope derived from CML66; aa70–78: WIQDSVYYI, which may be a promising and secure target for immunotherapy against acute leukemias and aggressive CML.


1996 ◽  
Vol 184 (4) ◽  
pp. 1377-1384 ◽  
Author(s):  
K Geissler ◽  
L Ohler ◽  
M Födinger ◽  
I Virgolini ◽  
M Leimer ◽  
...  

Autonomous release of hematopoietic growth factors may play a crucial role in the pathogenesis of certain hematological malignancies. Because of its cytokine synthesis-inhibiting action, interleukin 10 (IL-10) could be a potentially useful molecule to affect leukemic cell growth in such disorders. Chronic myelomonocytic leukemia (CMML) cells spontaneously form myeloid colonies (colony-forming units-granulocyte/macrophage) in methylcellulose, suggesting an autocrine growth factor-mediated mechanism. We studied the effect of recombinant human IL-10 (rhIL-10) on the in vitro growth of mononuclear cells obtained from peripheral blood or bone marrow of patients with CMML. IL-10 specifically binding to leukemic cells had a profound and dose-dependent inhibitory effect on autonomous in vitro growth of CMML cells. IL-10 significantly inhibited the spontaneous growth of myeloid colonies in methylcellulose in 10/11 patients, and autonomous CMML cell growth in suspension in 5/5 patients tested. Spontaneous colony growth from CMML cells was also markedly reduced by addition of antigranulocyte/macrophage colony-stimulating factor (GM-CSF) antibodies, but not by addition of antibodies against G-CSF, IL-3, or IL-6, IL-10-induced suppression of CMML cell growth was reversed by the addition of exogenous GM-CSF and correlated with a substantial decrease in GM-CSF production by leukemic cells, both at the mRNA and protein levels. Our data indicate that IL-10 profoundly inhibits the autonomous growth of CMML cells in vitro most likely through suppression of endogenous GM-CSF release. This observation suggests therapeutic evaluation of rhIL-10 in patients with CMML.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 209-216 ◽  
Author(s):  
EM Macmillan ◽  
TJ Gonda

Murine myeloid cells can be transformed in vitro by infection with recombinant retroviruses carrying activated myb genes. While these myb- transformed hematopoietic cells (MTHCs) can proliferate continuously in culture, they exhibit several characteristics of progenitor cells of the granulocyte-macrophage (GM) lineage, including an absolute dependence on hematopoietic growth factors (HGFs) such as GM colony- stimulating factor (GM-CSF) for survival and growth. Whereas we have previously shown that MTHCs respond synergistically to certain combinations of HGFs, we report here that MTHCs apparently require two HGFs for proliferation, because GM-CSF alone appears insufficient to promote growth when MTHCs are cultured at very low densities. However, proliferation can be stimulated by either increasing the density at which MTHCs are cultured (implying the production of an autocrine growth factor) or by the presence of a feeder layer of irradiated fibroblasts. We find that the activity of such feeder layers is greatest when the MTHCs are allowed to contact them directly; and by using mutant fibroblast lines, that it depends on the production of CSF- 1, but not Steel factor (SLF). In contrast, the autocrine factor appears not to be either CSF-1 or SLF, and the possibility is raised that it may represent a novel HGF activity. Potential implications of these results for normal and leukemic hematopoiesis are discussed.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 23-24
Author(s):  
Koji Jimbo ◽  
Takaaki Konuma ◽  
Takahiro Ito ◽  
Yaeko Nakajima-Takagi ◽  
Atsushi Iwama ◽  
...  

Immunoglobulin superfamily member 8 (IGSF8, also known as EWI-2, PGRL, and CD316), is a cell surface protein containing 4 immunoglobulin domains. IGSF8 directly binds to the tetraspanin molecules, CD9 and CD81, and modulates cell adhesion, migration, and growth. Previous studies demonstrated that IGSF8 was associated with prognosis and metastasis in several solid tumors. However, the role of IGSF8 in normal hematopoiesis and myeloid leukemia is still unclear. First, we examined the expression levels of Igsf8 in various hematopoietic fraction of wild-type murine bone marrow cells, and found that Igsf8 is expressed in all hematopoietic lineages. To investigate hematopoietic functions of Igsf8, we generated hematopoietic cells specific Igsf8 deleted mice (Igsf8fl/fl; Vav-Cre) and tamoxifen induced Igsf8 deleted mice (Igsf8fl/fl; Rosa26-CreERT). Igsf8fl/fl, Vav-Cre (denoted as Igsf8-/-) mice represented normal maturation. Deletion of Igsf8 did not significantly affect adult hematopoiesis in peripheral blood and bone marrow. Igsf8-/- long-term hematopoietic stem cells (LT-HSCs: CD34- Flk2- c-Kit+ Sca-1+ Lineage- cells) reduced colony forming ability in vitro, and serial competitive transplantation assay showed comparable donor chimerism by 3 months, but led to decrease Igsf8-/- donor chimerism at 4 months and those after second transplantation in vivo. These results suggest that Igsf8 does not affect the adult hematopoiesis, but it can affect their proliferative and reconstitutive capacity of HSCs. To investigate the effects of Igsf8 on myeloid leukemia, we generated MLL-AF9 and NRASG12V-driven acute myelogenous leukemia (AML), or BCR-ABL and NUP98-HOXA9-driven blast crisis of chronic myelogenous leukemia (CML-BC) mice models. Igsf8-/- led to a dramatic reduction in the number of leukemic colonies formed in vitro (Figure 1A). Igsf8-/- leukemia mice showed significantly longer survival in vivo (Figure 1B). This effect was also observed by eliminating Igsf8 expression after leukemia establishment using conditionally deletion. Igsf8-/- AML cells showed decreased S phase fraction. Igsf8-/- leukemia stem cells (LSCs: c-Kit+ Lineage- cells) triggered an increment of the apoptosis, which contribute to significantly lower proportion of LSCs in spleen of Igsf8-/- leukemic mice. Given that Igsf8-/- did not affect homing ability of leukemia cells, these results indicate that Igsf8 is required for propagation of myeloid leukemia and maintenance of LSC. To understand the Igsf8-mediated regulation of myeloid leukemia, we conducted RNA sequencing analysis of LT-HSCs, and LSCs of AML and CML-BC. Gene set enrichment analysis exhibited increase apoptosis related genes and decrease Wnt/β-catenin related genes in Igsf8-/- leukemic cells, but not in LT-HSCs (Figure 1C). Increment of pro-apoptosis genes, and decrement of anti-apoptosis genes and Wnt/β-catenin target genes in Igsf8-/- AML stem cells were validated in quantitative polymerase chain reaction analysis. Further, expression levels of β-catenin protein in Igsf8-/- leukemic cells were significantly lower compared to Igsf8+/+ leukemic cells, but not in normal hematopoietic stem and progenitor cells (Figure 1D). These results suggest that Igsf8 might be critical for myeloid leukemia maintenance via Wnt/β-catenin signaling pathway. Then, we investigated the effects of IGSF8 on human myeloid leukemia. We confirmed IGSF8 expression in several human myeloid leukemia cell line and primary patient-derived leukemia cells. Knockdown of IGSF8 by small hairpin RNA in myeloid leukemia cell lines (THP-1, MV4-11, SKM-1, and K562) and primary patient-derived AML cells exhibited reduced numbers of colony forming cells in vitro. Knockdown of IGSF8 also caused decrease expression of β-CATENIN in AML cell lines. These results indicate that IGSF8 is also required for propagation of human myeloid leukemia cells. Taken together, our present study reveals that Igsf8 is indispensable for myeloid leukemia, but not adult hematopoiesis, suggesting that IGSF8 inhibition should be considered for targeting myeloid leukemia. Disclosures Jimbo: Japan Society for the Promotion of Science: Research Funding. Konuma:SGH Foundation: Research Funding; The Japanese Society of Hematology: Research Funding; Institute for Frontier Life and Medical Sciences, Kyoto University: Research Funding. Ito:Institute for Frontier Life and Medical Sciences, Kyoto University: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document