scholarly journals Hemonectin mediates adhesion of engrafted murine progenitors to a clonal bone marrow stromal cell line from Sl/Sld mice

Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1691-1698 ◽  
Author(s):  
P Anklesaria ◽  
JS Greenberger ◽  
TJ Fitzgerald ◽  
B Sullenbarger ◽  
M Wicha ◽  
...  

Abstract Mutant Sl/Sld mice exhibit decreased marrow hematopoiesis. The defect is known to reside in the marrow microenvironment of these animals, which is reproduced in vitro by primary marrow explants as well as by cloned marrow stromal cell lines. Bone marrow progenitor cells are incapable of adhering to primary Sl/Sld stromal cells or cloned stromal cell lines derived from them to form cobblestone-islands and proliferate. The role of hemonectin, a marrow-specific adhesion protein in the defective hematopoiesis of the Sl/Sld mice, was studied. Indirect immunoperoxidase staining of marrow in situ from Sl/Sld mice showed little specific staining while specific staining was seen in a pericellular distribution in marrow from +/+ mice. Hemonectin expression in several cloned stromal cell lines from Sl/Sld mice was compared by immunoblotting with that in cloned stromal cell lines from normal +/+ littermates. Cell line Sld3, which has the least hematopoiesis supportive capacity in vitro, showed no detectable hemonectin by immunoblotting, while Sld1 and Sld2 showed detectable but greatly reduced amounts compared with normal +/+ 2.4, GBI/6, and D2XRII. Confluent cultures incubated with purified hemonectin and engrafted with enriched progenitors showed a significant increase in the cumulative number of cobbleston-islands and day 14 spleen colony- forming units (CFU-s) forming progenitors (39.15 +/- 3.6/dish; 16.3 +/- 3.1/dish, respectively), compared with untreated Sld3 cultures (cobblestone-islands 8.1 +/- 3.6/dish; CFU-s forming progenitors 8.8 +/- 0.05/dish). Hemonectin-mediated progenitor cell binding to the Sld3 stromal cells was specifically inhibited by antihemonectin but not by preimmune serum. These data support the role of hemonectin in early progenitor-stromal cell interactions.

Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1691-1698
Author(s):  
P Anklesaria ◽  
JS Greenberger ◽  
TJ Fitzgerald ◽  
B Sullenbarger ◽  
M Wicha ◽  
...  

Mutant Sl/Sld mice exhibit decreased marrow hematopoiesis. The defect is known to reside in the marrow microenvironment of these animals, which is reproduced in vitro by primary marrow explants as well as by cloned marrow stromal cell lines. Bone marrow progenitor cells are incapable of adhering to primary Sl/Sld stromal cells or cloned stromal cell lines derived from them to form cobblestone-islands and proliferate. The role of hemonectin, a marrow-specific adhesion protein in the defective hematopoiesis of the Sl/Sld mice, was studied. Indirect immunoperoxidase staining of marrow in situ from Sl/Sld mice showed little specific staining while specific staining was seen in a pericellular distribution in marrow from +/+ mice. Hemonectin expression in several cloned stromal cell lines from Sl/Sld mice was compared by immunoblotting with that in cloned stromal cell lines from normal +/+ littermates. Cell line Sld3, which has the least hematopoiesis supportive capacity in vitro, showed no detectable hemonectin by immunoblotting, while Sld1 and Sld2 showed detectable but greatly reduced amounts compared with normal +/+ 2.4, GBI/6, and D2XRII. Confluent cultures incubated with purified hemonectin and engrafted with enriched progenitors showed a significant increase in the cumulative number of cobbleston-islands and day 14 spleen colony- forming units (CFU-s) forming progenitors (39.15 +/- 3.6/dish; 16.3 +/- 3.1/dish, respectively), compared with untreated Sld3 cultures (cobblestone-islands 8.1 +/- 3.6/dish; CFU-s forming progenitors 8.8 +/- 0.05/dish). Hemonectin-mediated progenitor cell binding to the Sld3 stromal cells was specifically inhibited by antihemonectin but not by preimmune serum. These data support the role of hemonectin in early progenitor-stromal cell interactions.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3901-3901
Author(s):  
Kevin Keppel ◽  
Michael W. Epperly ◽  
Donna Shields ◽  
Wen Hou ◽  
Darcy Franicola ◽  
...  

Abstract Introduction: Bone marrow progenitor cells from Fanconi Anemia (FA) patients have a hyperactive TGF-β signaling pathway which may explain hematopoietic stem cell depletion leading to bone marrow failure (Zhang, et al, Cell Stem Cell, 18:668-681, 2016). To determine whether blockade of TGF-B signaling by knockout of Smad3 normalized hematopoiesis in Fancd2-/- mice, we bred two double knockout mouse strains. The first (DKO#1) was derived by crossing C57BL/6 Fancd2 +/- mice with 129/Sv Smad3 +/- mice. The second (DKO#2) was derived by mating 129/Sv Fancd2 +/- mice with the same 129/Sv Smad3 +/- mice. Materials and Methods: Long term bone marrow cultures (LTBMCs) were established from DKO#1, DKO#2, parental mouse strains and F1 (129/Sv X C57Bl/6) control mice for DKO#1, 129/Sv Smad3 -/-, and C57BL/6 Smad3 -/- mice . The cultures were scored for weekly numbers of cobblestone islands as an indicator of stem cells in the adherent layer, weekly production of nonadherent cells, and cells producing Day 7 and Day 14 CFU-GEMM .Bone marrow stromal cell lines were derived from the adherent layer of LTBMCs and radiosensitivity measured in clonogenic radiation survival curves. Cells were irradiated to doses of 0 to 8 Gy, plated in 4 well linbro plates, incubated for 7 days at 37oC, stained with crystal violet and colonies of greater than 50 cells counted. Western analysis of the cell lines quantitated expression levels of proteins involved in the TGF-β signaling pathway, and DNA double strand break repair by homologous recombination and nonhomologous end-joining. Results: Both DKO1 and DKO2 LTBMCs showed decreased duration and magnitude of hematopoiesis, thus being similar to that observed with both C57BL/6 Fancd2-/- and 129/Sv Fancd2-/- mouse marrow cultures. Both were significantly lower than that for control mouse or Smad3-/- (129/Sv) marrow cultures. As expected, radiation survival curves showed that both C57Bl/6 Fancd2-/- and 129/Sv Fancd2-/- marrow stromal cell lines were radiosensitive compared to control cell lines including: F1 control, C57BL/6 control, and 129/Sv control (Berhane, et al, Rad Res. 181:76-89, 2014, Berhane et.al, Rad Res 182:35-49, 2014). In contrast marrow stromal cell lines from Smad3-/- (129/Sv) marrow cultures were radioresistant (Epperly, et al, Rad Res 165:671-677, 2006). Fresh marrow CFU-GEMM from both DKO#1 and DKO#2 mice showed resistance to abrogation of colony formation by increasing concentrations of TGF-B, (similar to the 129/Sv Smad3-/- cell line). In contrast, cell lines from all controls and both Fancd2-/- mice showed clear TGF-B mediated inhibition of hemopoietic colony formation. In striking contrast to the above similarities between DKO#1 and DKO#2 mice, marrow stromal cell lines from DKO#1 were radiosensitive (like theirFancd2-/- parent) while those from DKO#2 were radioresistant (like their Smad3-/- parent). Thus, DKO#1 retained the C57Bl/6 Fancd2-/- genotype cell line radiosensitivity: Do of 1.41 ± 0.03 Gy and 1.45 ± 0.05 Gy respectively, and were more radiosensitive than the control F1 bone marrow stromal cell line (p = 0.0230 and 0.0418, respectively) and DKO#2 retained the 129/Sv Smad3-/- cell line genotype radioresistance (Do = 2.15 ± 0.13 Gy) compared to control 129/Sv stromal cells (Do = 1.86 ± 0.04, p = 0.0054). Western analysis revealed that p21 was elevated in DKO#2 but not DKO#1 marrow stromal cell lines. Conclusions: While marrow from both DKO#1 and DKO#2 mice showed resistance to TGF-B signaling consistent with their smad3-/- genotype, only DKO#1 stromal cells retained the radiosensitivity of their Fancd2-/- genotype. Reduced p21 in irradiated DKO#1 marrow stromal cells may have allowed procession through G to S phase causing reduced time for DNA repair and radiosensitivity. The irradiated DKO#2 cells may have been blocked by p21 from passing through the G1 checkpoint and may have allowed DNA strand break repair and radioresistance. These DKO mice and derived cell lines should be valuable for analysis of the interaction of TGF-B signaling and FA pathways. Supported by NIAID/NIH U19-AI068021 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2328-2328
Author(s):  
Katja C. Weisel ◽  
Ying Gao ◽  
Jae-Hung Shieh ◽  
Lothar Kanz ◽  
Malcolm A.S. Moore

Abstract The aorta-gonads-mesonephros (AGM) region autonomously generates adult repopulating hematopoietic stem cells (HSC) in the mouse embryo and provides its own HSC-supportive microenvironment. Stromal cells from adult bone marrow, yolk sac, fetal liver and AGM have been used in coculture systems for analysing growth, maintenance and differentiation of hematopoietic stem cells. We generated >100 cloned stromal cell lines from the AGM of 10.5 dpc mouse embryos. In previous studies, we tested these for support of murine adult and human cord blood (CB) CD34+ cells. We could demonstrate that 25 clones were superior to the MS5 bone marrow stromal cell line in supporting progenitor cell expansion of adult mouse bone marrow both, in 2ndry CFC and CAFC production. In addition we demonstrated that 5 AGM lines promoted in absence of exogenous growth factors the expansion of human CB cells with progenitor (CFC production for at least 5 weeks) and stem cell (repopulation of cocultured cells in NOD/SCID assay) function. Now, we could show that one of the isolated stromal cell lines (AGM-S62) is capable in differentiating undifferentiated murine embryonic stem (mES) cells into cells of the hematopoietic lineage. A sequential coculture of mES-cells with AGM-S62 showed production of CD41+ hematopoietic progenitor cells at day 10 as well as 2ndry CFC and CAFC production of day 10 suspension cells. Hematopoietic cell differentiation was comparable to standard OP9 differentiation assay. With these data, we can describe for the first time, that a stromal cell line other than OP9 can induce hematopoietic differentiation of undifferentiated mES cells. Hematopoietic support occurs independently of M-CSF deficiency, which is the characteristic of OP9 cells, because it is strongly expressed by AGM-S62. To evaluate genes responsible for hematopoietic cell support, we compared a supporting and a non-supporting AGM stromal cell line by microarray analysis. The cell line with hematopoietic support clearly showed a high expression of mesenchymal markers (laminins, thrombospondin-1) as well as characteristic genes for the early vascular smooth muscle phenotype (Eda). Both phenotypes are described for stromal cells with hematopoietic support generated from bone marrow and fetal liver. In addition, the analysed supporting AGM stromal cell line interestingly expressed genes important in early B-cell differentiation (osteoprotegerin, early B-cell factor 1, B-cell stimulating factor 3), which goes in line with data demonstrating early B-cell development in the AGM-region before etablishing of fetal liver hematopoiesis. Further studies will show the significance of single factors found to be expressed in microarray analyses. This unique source of > 100 various cell lines will be of value in elucidating the molecular mechanisms regulating embryonic and adult hematopoiesis in mouse and man.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4307-4307
Author(s):  
Michael W. Epperly ◽  
Shaonan Cao ◽  
Xichen Zhang ◽  
Emily E. Greenberger ◽  
Julie Goff ◽  
...  

Abstract An intact Smad3 gene product is critical for a functioning signal transduction pathway following TGF binding to the TGF-β receptor. We have previously established Smad3−/− and Smad3+/+ long term bone marrow cultures (LTBMCs) and isolated clonal bone marrow stromal cell lines from each. The Smad3−/− cells were smaller in size but had a faster cell doubling time (24 hours compared to 48 hours) and increased saturation density compared to +/+ cells (15.3 ± 1.0 x 105 cells/25 mm2 flask compared to 3.8 ± 0.1 x 105, p = 0.003). The plating efficiency of the lines was similar (18.3 ± 2.7 compared to 15.5 ± 1.7, p = 0.417). We transfected the Smad3−/− cell line with a retrovirus containing the Smad3 transgene, and selected a subclone expressing the transgene mRNA, designated Smad3−/−(3). Smad3−/−(3) cells were increased in size to that of Smad3+/+ cells, and showed decreased cell saturation density. Using the Cytoworks computer controlled cell tracking Bioreactor, we measured the migration of each clonal line. Tissue culture wells of 100 cells per well were followed for 5 days tracking each cell in quadruplicate wells per cell line. Smad3+/+ cells migrated significantly faster over 5 days in culture compared to Smad3−/− cells. (The average velocities were 0.62 μm/min for Smad3+/+ and 0.36 μm/min for Smad3−/−, p<0.0001). Over 5 days, the average velocities for Smad3+/+ cells were 0.51, 0.51, 0.52, 0.72, 0.91 μm/min, and for Smad3−/− cells were 0.28, 0.38, 0.41, 0.37, 0.35 μm/min. The 5 p-values comparing these cell lines were all <0.0001. The 7 day clonagenic irradiation survival curve showed that Smad3+/+ and Smad3−/−(3) cells were significantly more sensitive (D0 = 1.75 ± 0.03 and 1.51 ± 0.07 Gy, respectively) compared to the Smad3−/− cell line (D0 = 2.43 ± 0.06 Gy, p=0.0016 and 0.0103). These results demonstrate a concordance of radioresistance and decreased migratory capacity in bone marrow stromal cells devoid of a functioning Smad3 gene product, and restoration of both properties following overexpression of the transgene product. These data may help explain the decreased radiation fibrosis observed in Smad3−/− mice.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3079-3089
Author(s):  
J Mladenovic ◽  
SM Anderson

The S17 murine stromal cell line was infected with retroviral vectors encoding the v-src and c-src oncogenes and cells expressing high levels of either pp60v-src or pp60c-src were isolated. Long-term bone marrow cultures (LTBMCs) established with these different stromal cell lines showed that progenitor cells proliferated to a greater extent in cultures with stromal cells that over-expressed either c-src or v-src. An increase in the number of granulocytes, monocytes, and colony- forming units granulocyte-macrophage (CFU-GM) in the nonadherent cell population of LTBMCs prepared with S17/v-src or S17/c-src stromal cells was observed. Conditioned media from the S17/v-src and S17/src stromal cell lines stimulated the formation of CFU-GM in the absence of additional hematopoietic cell growth factors. Conditioned media from S17/v-src and S17/c-src stimulated proliferation of the granulocyte- macrophage colony-stimulating factor (GM-CSF)-responsive cell line FDCP-1 and this stimulation was inhibited by neutralizing antisera to murine GM-CSF. An increase in the concentration of GM-CSF was confirmed by enzyme-linked immunosorbent assay. No secretion of interleukin-1 alpha (IL-1 alpha) or tumor necrosis factor-alpha was detected by any of the stromal cell lines. There was no increase in the secretion of either CSF-1 or IL-6 by either S17/v-src or S17/c-src. The addition of 1 micrograms/mL monoclonal anti-GM-CSF antibody to LTBMCs caused a decrease in the number of nonadherent cells in cultures established with each of the different stromal cell lines. Northern blot analysis showed no difference in the level of GM-CSF RNA among the different stromal cell lines. These studies suggest that the increased proliferation of hematopoietic progenitor cells in LTBMCs with S17/v-src or S17/c-src cells may result from a posttranscriptional event that elevates production of GM-CSF by the S17/c-src and S17/v-src stromal cells.


Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 447-455 ◽  
Author(s):  
D Zipori ◽  
J Toledo ◽  
K von der Mark

Abstract Study of a series of stromal cell lines from mouse bone marrow (MBA) verified and extended their classification as phenotypically distinct subtypes. Production of extracellular matrix proteins was examined using specific antibodies. Fibronectin and laminin were detected in all of the cell lines tested, yet 14F1.1 adipocytes exhibited particularly prominent extracellular deposition. This cell line and MBA-13.2 cells were positive to both collagen types I and IV, whereas MBA-1 and MBA- 2.1 were stained with anticollagen type I antibodies only. Coculture experiments revealed differences among the lines in their effects on normal myeloid cells and leukemic cell lines. In promoting the in vitro accumulation of myeloid progenitors (CFU-C), 14F1.1 cells surpassed the others. The MBA-2.1 cell line was particularly inhibitory to MPC-11 plasmacytoma and Friend erythroleukemia cells. However, the latter were refractory to other stromal cell lines, whereas MPC-11 cells were inhibited to various degrees by virtually all of the cell lines. Physical separation between the interacting cells reduced the inhibition in some but not all cases, and no inhibitory activity was detected in conditioned media. The MBA-13 stromal cells synergistically promoted the differentiation of dimethylsulfoxide (Me2SO)-induced Friend erythroleukemia. The latter cells themselves, at high concentrations, as well as some of the stromal cell lines and unrelated adherent cells, antagonized the Me2SO effect, revealing possible reversible stages in the Friend cell differentiation pathway.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1280-1280
Author(s):  
Bryan J. McIntosh ◽  
Norma E. Fox ◽  
Kenneth Kaushansky

Abstract Thrombopoietin (TPO) is the primary regulator of megakaryopoiesis and therefore also the most important determinant of the number of platelets in circulation. The regulation of TPO blood concentration is complex, with at least a significant component mediated by removal and degradation of the hormone by the mature circulating platelet mass. In this way, if the production of TPO were fixed, when the number of platelets rises, an increased amount of TPO is removed from the plasma, resulting in an inverse relationship between platelet counts and TPO concentration. However, several studies hint at the existence of additional mechanisms in which TPO production is altered in response to physiological and pathologic conditions. We, and others, have previously reported that TPO mRNA is increased in the bone marrow of mice or humans after either immune- or radiation-mediated thrombocytopenia, although hepatic levels remain unchanged by this manipulation. To further explore the mechanism(s) of this effect, we utilized in vitro marrow stromal cell models to study the effects of blood proteins on TPO production. As an initial hypothesis we determined if platelet-derived proteins in serum might suppress TPO production from both a marrow stromal cell line, OP9, or primary murine marrow stromal cells derived from long-term hematopoietic cultures. As assessed by quantitative RT-PCR we found that TPO mRNA levels increase a mean of 2.8-fold±0.7 (n = 3) twelve hours following the removal of serum from the culture. Similar results were obtained from primary murine marrow stromal cells; TPO mRNA levels rose a mean of 2.9-fold±0.9 (n = 4) within sixteen hours of serum deprivation. In contrast, TPO transcript levels were unaffected by the same manipulation of serum in the hepatocyte cell line HEPA1c1c7. As the removal of serum might have induced a stress response in the cells, we tested whether other cell stressors might mimic this response; we found that neither UV irradiation nor treatment with toxic metals such as nickel, cobalt, or cadmium produced any rise in TPO mRNA in marrow stromal cells. Furthermore, to test whether a cell cycle arrest triggered by serum deprivation might mediate these effects, we treated stromal cells with cell cycle inhibitors, but failed to find any affect on TPO transcript levels in stromal cells. Further biochemical fractionation of serum suggested that one or more distinct proteins is responsible for this effect, demonstrated by the ability of both ammonium sulfate precipitation and ion exchange chromatography to partition the suppressive effects of serum. However, the active agent in serum is not TPO itself, as the addition of 150 ng/ml of the pure hormone did not suppress stromal cell TPO transcript levels. Knowledge of this novel regulatory mechanism should be useful in treating platelet disorders and perhaps also during stem cell transplantation, a setting in which TPO is known to play a vital role.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3079-3089 ◽  
Author(s):  
J Mladenovic ◽  
SM Anderson

Abstract The S17 murine stromal cell line was infected with retroviral vectors encoding the v-src and c-src oncogenes and cells expressing high levels of either pp60v-src or pp60c-src were isolated. Long-term bone marrow cultures (LTBMCs) established with these different stromal cell lines showed that progenitor cells proliferated to a greater extent in cultures with stromal cells that over-expressed either c-src or v-src. An increase in the number of granulocytes, monocytes, and colony- forming units granulocyte-macrophage (CFU-GM) in the nonadherent cell population of LTBMCs prepared with S17/v-src or S17/c-src stromal cells was observed. Conditioned media from the S17/v-src and S17/src stromal cell lines stimulated the formation of CFU-GM in the absence of additional hematopoietic cell growth factors. Conditioned media from S17/v-src and S17/c-src stimulated proliferation of the granulocyte- macrophage colony-stimulating factor (GM-CSF)-responsive cell line FDCP-1 and this stimulation was inhibited by neutralizing antisera to murine GM-CSF. An increase in the concentration of GM-CSF was confirmed by enzyme-linked immunosorbent assay. No secretion of interleukin-1 alpha (IL-1 alpha) or tumor necrosis factor-alpha was detected by any of the stromal cell lines. There was no increase in the secretion of either CSF-1 or IL-6 by either S17/v-src or S17/c-src. The addition of 1 micrograms/mL monoclonal anti-GM-CSF antibody to LTBMCs caused a decrease in the number of nonadherent cells in cultures established with each of the different stromal cell lines. Northern blot analysis showed no difference in the level of GM-CSF RNA among the different stromal cell lines. These studies suggest that the increased proliferation of hematopoietic progenitor cells in LTBMCs with S17/v-src or S17/c-src cells may result from a posttranscriptional event that elevates production of GM-CSF by the S17/c-src and S17/v-src stromal cells.


Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 447-455
Author(s):  
D Zipori ◽  
J Toledo ◽  
K von der Mark

Study of a series of stromal cell lines from mouse bone marrow (MBA) verified and extended their classification as phenotypically distinct subtypes. Production of extracellular matrix proteins was examined using specific antibodies. Fibronectin and laminin were detected in all of the cell lines tested, yet 14F1.1 adipocytes exhibited particularly prominent extracellular deposition. This cell line and MBA-13.2 cells were positive to both collagen types I and IV, whereas MBA-1 and MBA- 2.1 were stained with anticollagen type I antibodies only. Coculture experiments revealed differences among the lines in their effects on normal myeloid cells and leukemic cell lines. In promoting the in vitro accumulation of myeloid progenitors (CFU-C), 14F1.1 cells surpassed the others. The MBA-2.1 cell line was particularly inhibitory to MPC-11 plasmacytoma and Friend erythroleukemia cells. However, the latter were refractory to other stromal cell lines, whereas MPC-11 cells were inhibited to various degrees by virtually all of the cell lines. Physical separation between the interacting cells reduced the inhibition in some but not all cases, and no inhibitory activity was detected in conditioned media. The MBA-13 stromal cells synergistically promoted the differentiation of dimethylsulfoxide (Me2SO)-induced Friend erythroleukemia. The latter cells themselves, at high concentrations, as well as some of the stromal cell lines and unrelated adherent cells, antagonized the Me2SO effect, revealing possible reversible stages in the Friend cell differentiation pathway.


Sign in / Sign up

Export Citation Format

Share Document