scholarly journals Cascade transactivation of growth factor receptors in early human hematopoiesis

Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1442-1456 ◽  
Author(s):  
U Testa ◽  
E Pelosi ◽  
M Gabbianelli ◽  
C Fossati ◽  
S Campisi ◽  
...  

Highly purified progenitors (including erythroid [BFU-E], granulo- monocytic [CFU-GM], multipotent [CFU-GEMM] progenitors, as well as multipotent progenitors with self-renewal capacity [CFU-B]) express high-affinity growth factor receptors (GFRs), with prevalent interleukin-3 receptors (IL-3Rs) (2,700/cell), a > or = 10-fold lower number of IL-6Rs (145/cell) and granulocyte-macrophage colony- stimulating factor receptors (GM-CSFRs) (300/cell), and a barely detectable level of erythropoietin (Ep) receptors (75/cell). Hematopoietic growth factor (HGF) dosages inducing peak clonogenetic effects are associated with partial/subtotal occupancy of the homologous HGF receptor (HGFR). Cross-reactivity between GFRs and heterologous GFs (including IL-6, IL-3, GM-CSF, Ep, and the kit ligand [KL]) was explored by competition experiments on purified progenitors with radiolabeled and excess cold HGFs at +4 degrees C. No cross- reaction was observed between IL-6R, IL-3R, EpR, and the heterologous GFs, whereas the GM-CSFR showed cross-reactivity with IL-3 and, to a lesser extent, KL. Modulation of GFRs was examined after 18 or 40 hours of incubation with GF(s) at 37 degrees C, followed by ligand-binding assay at 20 degrees C. IL-6, IL-3, GM-CSF, and Ep induce a marked down- modulation of their own receptors. Interestingly, each GF induces the transactivation of the R(s) for the “distal” GF(s): (1) IL-6 induces transactivation of IL-3R, but not of GM-CSFR/EpR; (2) IL-3 causes a rapid upmodulation of GM-CSFR/EpR (“pure” progenitors treated with IL-3 show upmodulation of GM-CSFR alpha-chain mRNA by reverse transcriptase- polymerase chain reaction); whereas (3) GM-CSF induces the transactivation of the EpR. This chain upmodulation of HGFRs may underlie the synergistic interactions between the HGFs in clonogenetic culture. It is emphasized that KL does not induce upmodulation of the other GFRs. Finally, Ep, GM-CSF, and IL-3 do not modulate the expression of the “proximal” HGFRs (ie, GM-CSFR/IL-3R/IL-6R, IL-3R/IL- 6R, and IL-6R, respectively). These results allow insight into the cellular basis of hematopoiesis, ie, the complex and coordinate interactions between HGFs and their receptors. They are compatible with a model of cascade transactivation via upmodulation of GFRs in the initial key steps of hematopoietic differentiation, whereby the action of each GF enhances the effect of the distal GF(s) by a multistep chain- potentiation mechanism.

Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1442-1456 ◽  
Author(s):  
U Testa ◽  
E Pelosi ◽  
M Gabbianelli ◽  
C Fossati ◽  
S Campisi ◽  
...  

Abstract Highly purified progenitors (including erythroid [BFU-E], granulo- monocytic [CFU-GM], multipotent [CFU-GEMM] progenitors, as well as multipotent progenitors with self-renewal capacity [CFU-B]) express high-affinity growth factor receptors (GFRs), with prevalent interleukin-3 receptors (IL-3Rs) (2,700/cell), a > or = 10-fold lower number of IL-6Rs (145/cell) and granulocyte-macrophage colony- stimulating factor receptors (GM-CSFRs) (300/cell), and a barely detectable level of erythropoietin (Ep) receptors (75/cell). Hematopoietic growth factor (HGF) dosages inducing peak clonogenetic effects are associated with partial/subtotal occupancy of the homologous HGF receptor (HGFR). Cross-reactivity between GFRs and heterologous GFs (including IL-6, IL-3, GM-CSF, Ep, and the kit ligand [KL]) was explored by competition experiments on purified progenitors with radiolabeled and excess cold HGFs at +4 degrees C. No cross- reaction was observed between IL-6R, IL-3R, EpR, and the heterologous GFs, whereas the GM-CSFR showed cross-reactivity with IL-3 and, to a lesser extent, KL. Modulation of GFRs was examined after 18 or 40 hours of incubation with GF(s) at 37 degrees C, followed by ligand-binding assay at 20 degrees C. IL-6, IL-3, GM-CSF, and Ep induce a marked down- modulation of their own receptors. Interestingly, each GF induces the transactivation of the R(s) for the “distal” GF(s): (1) IL-6 induces transactivation of IL-3R, but not of GM-CSFR/EpR; (2) IL-3 causes a rapid upmodulation of GM-CSFR/EpR (“pure” progenitors treated with IL-3 show upmodulation of GM-CSFR alpha-chain mRNA by reverse transcriptase- polymerase chain reaction); whereas (3) GM-CSF induces the transactivation of the EpR. This chain upmodulation of HGFRs may underlie the synergistic interactions between the HGFs in clonogenetic culture. It is emphasized that KL does not induce upmodulation of the other GFRs. Finally, Ep, GM-CSF, and IL-3 do not modulate the expression of the “proximal” HGFRs (ie, GM-CSFR/IL-3R/IL-6R, IL-3R/IL- 6R, and IL-6R, respectively). These results allow insight into the cellular basis of hematopoiesis, ie, the complex and coordinate interactions between HGFs and their receptors. They are compatible with a model of cascade transactivation via upmodulation of GFRs in the initial key steps of hematopoietic differentiation, whereby the action of each GF enhances the effect of the distal GF(s) by a multistep chain- potentiation mechanism.


Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1190-1198 ◽  
Author(s):  
SC Guba ◽  
CI Sartor ◽  
LR Gottschalk ◽  
YH Jing ◽  
T Mulligan ◽  
...  

Abstract Bone marrow (BM) stromal fibroblasts produce hematopoietic growth factors (HGFs) in response to inflammatory mediators such as tumor necrosis factor-alpha or interleukin-1 alpha (IL-1 alpha). In the absence of such inflammatory stimuli, production of HGFs by BM stromal cells has been problematic and controversial. In vivo, however, basal hematopoiesis maintains blood counts within a normal homeostatic range even in the absence of inflammation, and HGFs are required for progenitor cell differentiation in vitro. To better ascertain the contribution of BM stromal fibroblasts to basal hematopoiesis, we therefore studied HGF production in quiescent BM stromal fibroblasts by three sensitive assays: serum-free bioassay, enzyme-linked immunosorbent assay, and reverse transcriptase polymerase chain reaction. Stromal fibroblasts were cultured in the presence or absence of normal human serum to determine if serum factor(s) present in the noninflammatory (basal) state induce secretion of HGFs. Human serum was found to induce or enhance transcription and secretion of granulocyte- macrophage colony-stimulating factor (GM-CSF) and enhance secretion of constitutively expressed IL-6. In contrast, no secretion of either granulocyte-CSF (G-CSF) or IL-3 was found. These data indicate that factors in normal human serum are active in enhancing GM-CSF and IL-6 production by stromal fibroblasts and suggest that these growth factors contribute to the maintainance of normal, basal hematopoiesis in vivo.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 971-979 ◽  
Author(s):  
T Tsuda ◽  
D Wong ◽  
J Dolovich ◽  
J Bienenstock ◽  
J Marshall ◽  
...  

Abstract We have recently shown that nerve growth factor (NGF) promotes human granulopoiesis, specifically augmenting basophilic cell differentiation observed in methylcellulose hematopoietic colony assays of human peripheral blood. Because the NGF effect was seen in the presence of conditioned medium derived from a human T-cell line (Mo-CM) containing granulocyte-macrophage colony-stimulating factor (GM-CSF), we examined interactions of purified NGF and recombinant human GM-CSF (rhGM-CSF) on granulocyte growth and differentiation. rhGM-CSF stimulated a dose- dependent increase in methylcellulose colony growth at concentrations between 0.1 U/mL and 10 U/mL, and in the presence of NGF at 500 ng/mL this effect was enhanced. The number of basophilic cell colony-forming units (CFU-Baso) and histamine-positive colonies increased synergistically when NGF was added to rhGM-CSF. Furthermore, because Mo- CM acts with sodium butyrate to promote basophilic differentiation of alkaline-passaged myeloid leukemia cells, HL-60, we also examined the interaction of NGF and Mo-CM or rhGM-CSF using this assay. In the presence of NGF, Mo-CM at concentrations of 0.5% to 20% vol/vol, and rhGM-CSF at concentrations of 0.1 U/mL to 100 U/mL synergistically increased histamine production by butyrate-induced, alkaline-passaged HL-60 cells; this was associated with the appearance of metachromatic, tryptase-negative, IgE receptor-positive cells. The effects of rhGM-CSF or Mo-CM were completely abrogated by a specific anti-rhGM-CSF neutralizing antibody in methylcellulose, with or without NGF; the NGF synergy with rhGM-CSF in the HL-60 assay was also inhibited by either anti-rhGM-CSF or anti-NGF antibody. These studies support the notion that differentiation in the basophilic lineage may be enhanced by NGF acting to increase the number of GM-CSF-responsive basophilic cell progenitors.


Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1190-1198 ◽  
Author(s):  
SC Guba ◽  
CI Sartor ◽  
LR Gottschalk ◽  
YH Jing ◽  
T Mulligan ◽  
...  

Bone marrow (BM) stromal fibroblasts produce hematopoietic growth factors (HGFs) in response to inflammatory mediators such as tumor necrosis factor-alpha or interleukin-1 alpha (IL-1 alpha). In the absence of such inflammatory stimuli, production of HGFs by BM stromal cells has been problematic and controversial. In vivo, however, basal hematopoiesis maintains blood counts within a normal homeostatic range even in the absence of inflammation, and HGFs are required for progenitor cell differentiation in vitro. To better ascertain the contribution of BM stromal fibroblasts to basal hematopoiesis, we therefore studied HGF production in quiescent BM stromal fibroblasts by three sensitive assays: serum-free bioassay, enzyme-linked immunosorbent assay, and reverse transcriptase polymerase chain reaction. Stromal fibroblasts were cultured in the presence or absence of normal human serum to determine if serum factor(s) present in the noninflammatory (basal) state induce secretion of HGFs. Human serum was found to induce or enhance transcription and secretion of granulocyte- macrophage colony-stimulating factor (GM-CSF) and enhance secretion of constitutively expressed IL-6. In contrast, no secretion of either granulocyte-CSF (G-CSF) or IL-3 was found. These data indicate that factors in normal human serum are active in enhancing GM-CSF and IL-6 production by stromal fibroblasts and suggest that these growth factors contribute to the maintainance of normal, basal hematopoiesis in vivo.


1990 ◽  
Vol 10 (9) ◽  
pp. 4953-4956
Author(s):  
R Murray ◽  
F Lee ◽  
C P Chiu

We have investigated the role that hemopoietic regulatory molecules may play in mouse embryogenesis prior to the appearance of hemopoietic stem cells or their microenvironments. Using polymerase chain reaction analysis, we detected mRNA transcripts for interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) but not for granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-3 in mouse blastocysts at 3.5 days of gestation. Functional IL-6 protein was also detected in cultured blastocysts as a secreted product, as was an activity consistent with the presence of LIF protein. The expression of IL-6 and LIF in blastocysts prior to hemopoiesis suggests that these proteins may regulate the growth and development of trophoblasts or embryonic stem cells.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3169-3177 ◽  
Author(s):  
Fabrizio Vinante ◽  
Martina Marchi ◽  
Antonella Rigo ◽  
Patrizia Scapini ◽  
Giovanni Pizzolo ◽  
...  

Heparin-binding epidermal growth factor–like growth factor (HB-EGF) is a widely expressed EGF superfamily member that induces mitogenic and/or chemotactic activities toward different cell types through binding to EGF receptors 1 or 4. Membrane-bound HB-EGF exerts growth activity and adhesion capabilities and possesses the unique property of being the receptor for diphtheria toxin (DT). Using molecular and functional techniques, we show that human polymorphonuclear granulocytes (PMN), which did not express HB-EGF in resting conditions, expressed it at mRNA and protein level, following incubation with granulocyte-macrophage colony-stimulating factor (GM-CSF). Other classic agonists for PMN (including lipopolysaccharide, phagocytable particles, tumor necrosis factor-, or G-CSF) failed to induce HB-EGF. The effects of GM-CSF on HB-EGF mRNA levels were concentration-dependent, reached a plateau after 1 to 2 hours of stimulation, and did not require protein synthesis. After GM-CSF treatment, membrane-bound HB-EGF was detected by flow cytometry. At the same time, PMN acquired sensitivity to the apoptosis-promoting effect of DT, which, moreover, specifically suppressed the GM-CSF–induced priming of formyl-methionyl-leucyl-phenylalanine–stimulated superoxide anion release. Finally, soluble HB-EGF was detected in the PMN culture medium by a specific enzyme-linked immunosorbent assay. Thus, we provide evidence that HB-EGF is specifically inducible by GM-CSF in PMN and represents a novel peptide to be included in the repertoire of PMN-derived cytokines.


1990 ◽  
Vol 10 (9) ◽  
pp. 4953-4956 ◽  
Author(s):  
R Murray ◽  
F Lee ◽  
C P Chiu

We have investigated the role that hemopoietic regulatory molecules may play in mouse embryogenesis prior to the appearance of hemopoietic stem cells or their microenvironments. Using polymerase chain reaction analysis, we detected mRNA transcripts for interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) but not for granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-3 in mouse blastocysts at 3.5 days of gestation. Functional IL-6 protein was also detected in cultured blastocysts as a secreted product, as was an activity consistent with the presence of LIF protein. The expression of IL-6 and LIF in blastocysts prior to hemopoiesis suggests that these proteins may regulate the growth and development of trophoblasts or embryonic stem cells.


Blood ◽  
1996 ◽  
Vol 88 (9) ◽  
pp. 3391-3406 ◽  
Author(s):  
U Testa ◽  
C Fossati ◽  
P Samoggia ◽  
R Masciulli ◽  
G Mariani ◽  
...  

We have evaluated the expression of growth factor receptors (GFRs) on early hematopoietic progenitor cells (HPCs) purified from human adult peripheral blood and induced in liquid suspension culture to unilineage differentiation/maturation through the erythroid (E), granulocytic (G), megakaryocytic (Mk), or monocytic (Mo) lineage. The receptors for basic fibroblast GF (bFGF), erythropoietin (Epo), thrombopoietin (Tpo), and macrophage colony-stimulating factor (MCSF) have been only assayed at mRNA level; the majority of GFRs have been evaluated by both mRNA and protein analyses: the expression patterns were consistent at both levels. In quiescent HPCs the receptors for early-acting [flt3 ligand (FL), c-kit ligand (KL), bFGF, interleukin-6 (IL-6)] and multilineage [IL-3, granulocyte-macrophage CSF (GM-CSF)] HGFs are expressed at significant levels but with different patterns, eg, kit and flt3 are detected on a majority and minority of HPCs, respectively, whereas IL-3Rs and GM-CSFRs are present on almost all HPCs. In the four differentiation pathways, expression of early-acting receptors shows a progressive decrease, more rapidly for bFGFR-1 and flt3 than for c-kit; furthermore, c-kit is more slowly downmodulated in the E and Mk than the G and Mo lineages. As a partial exception, IL-6Rs are still detected through the early or late stages of maturation in the Mk and Mo lineages, respectively. IL-3R expression is progressively and rapidly downmodulated in both E and Mk pathways, whereas it moderately decreases in the Mo lineage and is sustained in the G series. The expression of GM-CSFR is gradually downmodulated in all differentiation pathways, ie, the receptor density markedly decreases but late erythroblasts are still partially GM-CSFR+ and terminal G, Mk and Mo cells are essentially GM-CSFR+. Expression of receptors for late-acting cytokines is lineage-specific. Thus, EpoR, G-CSFR, TpoR, and M-CSFR exhibit a gradual induction followed by a sustained expression in the E, G, MK, and Mo lineages, respectively. In the other differentiation pathways the expression of these receptors is either absent or initially low and there-after suppressed. These observations are compatible with the following multi-step model. (1) The early-acting GFRs are expressed on quiescent HPCs with different patterns, whereas the multilineage GFRs are present on > or = 90% to 95% HPCs. (2) Multilineage GFs, potentiated by early-acting HGFs, trigger HPCs into cycling. HPC proliferation/differentiation is followed by declining expression of the early-acting GFRs and in part of multilineage GFRs (see above). (3) Multilineage GFs trigger the expression of the unilineage GFRs (see Testa U, et al: Blood 81:1442, 1993). Interaction of each unilineage GF with its receptor leads to sustained expression of the receptor (possibly via transcription factors activating the receptor promoter) and thus mediates differentiation/maturation through the pertinent lineage.


Sign in / Sign up

Export Citation Format

Share Document