scholarly journals Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors

Blood ◽  
1996 ◽  
Vol 88 (9) ◽  
pp. 3391-3406 ◽  
Author(s):  
U Testa ◽  
C Fossati ◽  
P Samoggia ◽  
R Masciulli ◽  
G Mariani ◽  
...  

We have evaluated the expression of growth factor receptors (GFRs) on early hematopoietic progenitor cells (HPCs) purified from human adult peripheral blood and induced in liquid suspension culture to unilineage differentiation/maturation through the erythroid (E), granulocytic (G), megakaryocytic (Mk), or monocytic (Mo) lineage. The receptors for basic fibroblast GF (bFGF), erythropoietin (Epo), thrombopoietin (Tpo), and macrophage colony-stimulating factor (MCSF) have been only assayed at mRNA level; the majority of GFRs have been evaluated by both mRNA and protein analyses: the expression patterns were consistent at both levels. In quiescent HPCs the receptors for early-acting [flt3 ligand (FL), c-kit ligand (KL), bFGF, interleukin-6 (IL-6)] and multilineage [IL-3, granulocyte-macrophage CSF (GM-CSF)] HGFs are expressed at significant levels but with different patterns, eg, kit and flt3 are detected on a majority and minority of HPCs, respectively, whereas IL-3Rs and GM-CSFRs are present on almost all HPCs. In the four differentiation pathways, expression of early-acting receptors shows a progressive decrease, more rapidly for bFGFR-1 and flt3 than for c-kit; furthermore, c-kit is more slowly downmodulated in the E and Mk than the G and Mo lineages. As a partial exception, IL-6Rs are still detected through the early or late stages of maturation in the Mk and Mo lineages, respectively. IL-3R expression is progressively and rapidly downmodulated in both E and Mk pathways, whereas it moderately decreases in the Mo lineage and is sustained in the G series. The expression of GM-CSFR is gradually downmodulated in all differentiation pathways, ie, the receptor density markedly decreases but late erythroblasts are still partially GM-CSFR+ and terminal G, Mk and Mo cells are essentially GM-CSFR+. Expression of receptors for late-acting cytokines is lineage-specific. Thus, EpoR, G-CSFR, TpoR, and M-CSFR exhibit a gradual induction followed by a sustained expression in the E, G, MK, and Mo lineages, respectively. In the other differentiation pathways the expression of these receptors is either absent or initially low and there-after suppressed. These observations are compatible with the following multi-step model. (1) The early-acting GFRs are expressed on quiescent HPCs with different patterns, whereas the multilineage GFRs are present on > or = 90% to 95% HPCs. (2) Multilineage GFs, potentiated by early-acting HGFs, trigger HPCs into cycling. HPC proliferation/differentiation is followed by declining expression of the early-acting GFRs and in part of multilineage GFRs (see above). (3) Multilineage GFs trigger the expression of the unilineage GFRs (see Testa U, et al: Blood 81:1442, 1993). Interaction of each unilineage GF with its receptor leads to sustained expression of the receptor (possibly via transcription factors activating the receptor promoter) and thus mediates differentiation/maturation through the pertinent lineage.

Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1442-1456 ◽  
Author(s):  
U Testa ◽  
E Pelosi ◽  
M Gabbianelli ◽  
C Fossati ◽  
S Campisi ◽  
...  

Highly purified progenitors (including erythroid [BFU-E], granulo- monocytic [CFU-GM], multipotent [CFU-GEMM] progenitors, as well as multipotent progenitors with self-renewal capacity [CFU-B]) express high-affinity growth factor receptors (GFRs), with prevalent interleukin-3 receptors (IL-3Rs) (2,700/cell), a > or = 10-fold lower number of IL-6Rs (145/cell) and granulocyte-macrophage colony- stimulating factor receptors (GM-CSFRs) (300/cell), and a barely detectable level of erythropoietin (Ep) receptors (75/cell). Hematopoietic growth factor (HGF) dosages inducing peak clonogenetic effects are associated with partial/subtotal occupancy of the homologous HGF receptor (HGFR). Cross-reactivity between GFRs and heterologous GFs (including IL-6, IL-3, GM-CSF, Ep, and the kit ligand [KL]) was explored by competition experiments on purified progenitors with radiolabeled and excess cold HGFs at +4 degrees C. No cross- reaction was observed between IL-6R, IL-3R, EpR, and the heterologous GFs, whereas the GM-CSFR showed cross-reactivity with IL-3 and, to a lesser extent, KL. Modulation of GFRs was examined after 18 or 40 hours of incubation with GF(s) at 37 degrees C, followed by ligand-binding assay at 20 degrees C. IL-6, IL-3, GM-CSF, and Ep induce a marked down- modulation of their own receptors. Interestingly, each GF induces the transactivation of the R(s) for the “distal” GF(s): (1) IL-6 induces transactivation of IL-3R, but not of GM-CSFR/EpR; (2) IL-3 causes a rapid upmodulation of GM-CSFR/EpR (“pure” progenitors treated with IL-3 show upmodulation of GM-CSFR alpha-chain mRNA by reverse transcriptase- polymerase chain reaction); whereas (3) GM-CSF induces the transactivation of the EpR. This chain upmodulation of HGFRs may underlie the synergistic interactions between the HGFs in clonogenetic culture. It is emphasized that KL does not induce upmodulation of the other GFRs. Finally, Ep, GM-CSF, and IL-3 do not modulate the expression of the “proximal” HGFRs (ie, GM-CSFR/IL-3R/IL-6R, IL-3R/IL- 6R, and IL-6R, respectively). These results allow insight into the cellular basis of hematopoiesis, ie, the complex and coordinate interactions between HGFs and their receptors. They are compatible with a model of cascade transactivation via upmodulation of GFRs in the initial key steps of hematopoietic differentiation, whereby the action of each GF enhances the effect of the distal GF(s) by a multistep chain- potentiation mechanism.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1442-1456 ◽  
Author(s):  
U Testa ◽  
E Pelosi ◽  
M Gabbianelli ◽  
C Fossati ◽  
S Campisi ◽  
...  

Abstract Highly purified progenitors (including erythroid [BFU-E], granulo- monocytic [CFU-GM], multipotent [CFU-GEMM] progenitors, as well as multipotent progenitors with self-renewal capacity [CFU-B]) express high-affinity growth factor receptors (GFRs), with prevalent interleukin-3 receptors (IL-3Rs) (2,700/cell), a > or = 10-fold lower number of IL-6Rs (145/cell) and granulocyte-macrophage colony- stimulating factor receptors (GM-CSFRs) (300/cell), and a barely detectable level of erythropoietin (Ep) receptors (75/cell). Hematopoietic growth factor (HGF) dosages inducing peak clonogenetic effects are associated with partial/subtotal occupancy of the homologous HGF receptor (HGFR). Cross-reactivity between GFRs and heterologous GFs (including IL-6, IL-3, GM-CSF, Ep, and the kit ligand [KL]) was explored by competition experiments on purified progenitors with radiolabeled and excess cold HGFs at +4 degrees C. No cross- reaction was observed between IL-6R, IL-3R, EpR, and the heterologous GFs, whereas the GM-CSFR showed cross-reactivity with IL-3 and, to a lesser extent, KL. Modulation of GFRs was examined after 18 or 40 hours of incubation with GF(s) at 37 degrees C, followed by ligand-binding assay at 20 degrees C. IL-6, IL-3, GM-CSF, and Ep induce a marked down- modulation of their own receptors. Interestingly, each GF induces the transactivation of the R(s) for the “distal” GF(s): (1) IL-6 induces transactivation of IL-3R, but not of GM-CSFR/EpR; (2) IL-3 causes a rapid upmodulation of GM-CSFR/EpR (“pure” progenitors treated with IL-3 show upmodulation of GM-CSFR alpha-chain mRNA by reverse transcriptase- polymerase chain reaction); whereas (3) GM-CSF induces the transactivation of the EpR. This chain upmodulation of HGFRs may underlie the synergistic interactions between the HGFs in clonogenetic culture. It is emphasized that KL does not induce upmodulation of the other GFRs. Finally, Ep, GM-CSF, and IL-3 do not modulate the expression of the “proximal” HGFRs (ie, GM-CSFR/IL-3R/IL-6R, IL-3R/IL- 6R, and IL-6R, respectively). These results allow insight into the cellular basis of hematopoiesis, ie, the complex and coordinate interactions between HGFs and their receptors. They are compatible with a model of cascade transactivation via upmodulation of GFRs in the initial key steps of hematopoietic differentiation, whereby the action of each GF enhances the effect of the distal GF(s) by a multistep chain- potentiation mechanism.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2310-2318 ◽  
Author(s):  
Karen L. Anderson ◽  
Kent A. Smith ◽  
Hugh Perkin ◽  
Gary Hermanson ◽  
Carol-Gay Anderson ◽  
...  

PU.1 is a hematopoietic cell–specific ets family transcription factor. Gene disruption of PU.1 results in a cell autonomous defect in hematopoietic progenitor cells that manifests as abnormal myeloid and B-lymphoid development. Of the myeloid lineages, no mature macrophages develop, and the neutrophils that develop are aberrantly and incompletely matured. One of the documented abnormalities of PU.1 null (deficient) hematopoietic cells is a failure to express receptors for granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage (GM)-CSF, and M-CSF. To elucidate the roles of the myeloid growth factor receptors in myeloid cell differentiation, and to distinguish their role from that of PU.1, we have restored expression of the G- and M-CSF receptors in PU.1-deficient cells using retroviral vectors. We have similarly expressed PU.1 in these cells. Whereas expression of growth factor receptors merely allows a PU.1-deficient cell line to survive and grow in the relevant growth factor, expression of PU.1 enables the development of F4/80+, Mac-1+/CD11b+ macrophages, expression of gp91phox and generation of superoxide, and expression of secondary granule genes for neutrophil collagenase and gelatinase. These studies reinforce the idea that availability of PU.1 is crucial for normal myeloid development and clarify some of the molecular events in developing neutrophils and macrophages that are critically dependent on PU.1.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 971-979 ◽  
Author(s):  
T Tsuda ◽  
D Wong ◽  
J Dolovich ◽  
J Bienenstock ◽  
J Marshall ◽  
...  

Abstract We have recently shown that nerve growth factor (NGF) promotes human granulopoiesis, specifically augmenting basophilic cell differentiation observed in methylcellulose hematopoietic colony assays of human peripheral blood. Because the NGF effect was seen in the presence of conditioned medium derived from a human T-cell line (Mo-CM) containing granulocyte-macrophage colony-stimulating factor (GM-CSF), we examined interactions of purified NGF and recombinant human GM-CSF (rhGM-CSF) on granulocyte growth and differentiation. rhGM-CSF stimulated a dose- dependent increase in methylcellulose colony growth at concentrations between 0.1 U/mL and 10 U/mL, and in the presence of NGF at 500 ng/mL this effect was enhanced. The number of basophilic cell colony-forming units (CFU-Baso) and histamine-positive colonies increased synergistically when NGF was added to rhGM-CSF. Furthermore, because Mo- CM acts with sodium butyrate to promote basophilic differentiation of alkaline-passaged myeloid leukemia cells, HL-60, we also examined the interaction of NGF and Mo-CM or rhGM-CSF using this assay. In the presence of NGF, Mo-CM at concentrations of 0.5% to 20% vol/vol, and rhGM-CSF at concentrations of 0.1 U/mL to 100 U/mL synergistically increased histamine production by butyrate-induced, alkaline-passaged HL-60 cells; this was associated with the appearance of metachromatic, tryptase-negative, IgE receptor-positive cells. The effects of rhGM-CSF or Mo-CM were completely abrogated by a specific anti-rhGM-CSF neutralizing antibody in methylcellulose, with or without NGF; the NGF synergy with rhGM-CSF in the HL-60 assay was also inhibited by either anti-rhGM-CSF or anti-NGF antibody. These studies support the notion that differentiation in the basophilic lineage may be enhanced by NGF acting to increase the number of GM-CSF-responsive basophilic cell progenitors.


2019 ◽  
Author(s):  
Shenchao Guo ◽  
Houfa Yin ◽  
Mingjie Zheng ◽  
Yizhen Tang ◽  
Bing Lu ◽  
...  

Abstract Background To investigate serum cytokine profiles in patients with idiopathic choroidal neovascularization (ICNV) and explore the relationship between serum cytokine levels and ICNV severity. Methods This case-control study was conducted in 32 ICNV patients and 30 healthy volunteers. Clinical and demographic information was obtained from the medical data platform and the serum was analysed with a multiplex assay to determine the levels of seven cytokines: interleukin (IL)-2, IL-10, IL-15, IL-17, basic fibroblast growth factor (basic FGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). Results Serum levels of IL-2, IL-10, IL-17, basic FGF, and VEGF were elevated in ICNV patients compared to controls. Serum GM-CSF levels were positively related to central retinal thickness, and serum IL-17 levels were positively related to CNV lesion area. Conclusion Serum inflammatory cytokines were significantly elevated in ICNV patients compared to controls. This suggests that systemic inflammation may play a critical role in the physiopathology of ICNV.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2126-2132 ◽  
Author(s):  
H Avraham ◽  
N Banu ◽  
DT Scadden ◽  
J Abraham ◽  
JE Groopman

Basic fibroblast growth factor (bFGF) may act to modulate hematopoiesis in addition to its effects on mesenchymal cells. We studied the effects of bFGF on human and murine primary marrow megakaryocytes. bFGF modestly enhanced the size of the human megakaryocyte colony-forming unit (CFU-MK) and cell numbers per colony, in combination with interleukin-3 (IL-3) or granulocyte-macrophage colony stimulating factor (GM-CSF). Adhesion of human megakaryocytes to bone marrow (BM) stromal fibroblasts was enhanced when either stromal fibroblasts or megakaryocytes were treated with bFGF. This resulted in significantly increased proliferation of megakaryocytes. In addition, bFGF augmented secretion of the cytokines tumor necrosis factor alpha and IL-6 by human primary BM megakaryocytes. Immature murine megakaryocytes showed a significant growth response to bFGF as measured by the single cell growth assay. This effect was abrogated by specific antibodies for bFGF and combination of anti-IL-6 and anti-IL-1 beta antibodies. bFGF has no effect on murine CFU-MK formation, but significantly potentiated CFU-MK formation in the presence of IL-3 or GM-CSF. These results indicate that the effect of bFGF on various megakaryocyte populations is different and that bFGF may affect megakaryocytopoiesis via modulation of megakaryocyte-stromal interactions and via augmentation of cytokine secretion from megakaryocytes.


Blood ◽  
1994 ◽  
Vol 83 (6) ◽  
pp. 1575-1585 ◽  
Author(s):  
C Sirard ◽  
P Laneuville ◽  
JE Dick

The introduction of a retrovirus vector expressing p210bcr-abl (P210) into the human factor-dependent cell line M07E resulted in the rapid outgrowth of factor-independent cells. Early after infection, four factor-independent clones were isolated and analyzed in greater detail along with mass populations obtained from separate infections. High levels of P210 tyrosine kinase activity were measured in the factor- independent cells. The mass populations and three of the four clones remained responsive to exogenous growth factors. Concentrated conditioned media isolated from the factor-independent populations and from all clones contained biologically active granulocyte-macrophage colony-stimulating factor (GM-CSF); interleukin-3 (IL-3) was detected at low levels in the mass population and in two of the clones. Neutralizing antibodies to IL-3, GM-CSF, and mast cell growth factor inhibited proliferation of the factor responsive clones by 60% to 90%. These results indicate that the growth autonomy of the P210-expressing M07E cells was acquired via an autocrine mechanism. In addition to factor-independent growth, P210-expressing M07E cells readily acquired a more mature megakaryocytic phenotype compared with control M07E cells. These data provide experimental evidence that expression of P210 tyrosine kinase in human hematopoietic cells induced growth factor secretion resulting in a pleiotropic effect on growth factor dependence and differentiation.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3169-3177 ◽  
Author(s):  
Fabrizio Vinante ◽  
Martina Marchi ◽  
Antonella Rigo ◽  
Patrizia Scapini ◽  
Giovanni Pizzolo ◽  
...  

Heparin-binding epidermal growth factor–like growth factor (HB-EGF) is a widely expressed EGF superfamily member that induces mitogenic and/or chemotactic activities toward different cell types through binding to EGF receptors 1 or 4. Membrane-bound HB-EGF exerts growth activity and adhesion capabilities and possesses the unique property of being the receptor for diphtheria toxin (DT). Using molecular and functional techniques, we show that human polymorphonuclear granulocytes (PMN), which did not express HB-EGF in resting conditions, expressed it at mRNA and protein level, following incubation with granulocyte-macrophage colony-stimulating factor (GM-CSF). Other classic agonists for PMN (including lipopolysaccharide, phagocytable particles, tumor necrosis factor-, or G-CSF) failed to induce HB-EGF. The effects of GM-CSF on HB-EGF mRNA levels were concentration-dependent, reached a plateau after 1 to 2 hours of stimulation, and did not require protein synthesis. After GM-CSF treatment, membrane-bound HB-EGF was detected by flow cytometry. At the same time, PMN acquired sensitivity to the apoptosis-promoting effect of DT, which, moreover, specifically suppressed the GM-CSF–induced priming of formyl-methionyl-leucyl-phenylalanine–stimulated superoxide anion release. Finally, soluble HB-EGF was detected in the PMN culture medium by a specific enzyme-linked immunosorbent assay. Thus, we provide evidence that HB-EGF is specifically inducible by GM-CSF in PMN and represents a novel peptide to be included in the repertoire of PMN-derived cytokines.


Sign in / Sign up

Export Citation Format

Share Document