scholarly journals Pretransplant detection of human minor histocompatibility antigen- specific naive and memory interleukin-2-secreting T cells within class I major histocompatibility complex (MHC)-restricted CD8+ and class II MHC-restricted CD4+ T-cell subsets

Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 298-306 ◽  
Author(s):  
M Theobald ◽  
D Bunjes

Recent studies have shown that host-reactive interleukin-2 (IL-2)- secreting donor T lymphocytes (TI) are critically involved in the development of acute graft-versus-host disease (GVHD) after allogeneic HLA-identical sibling bone marrow transplantation (BMT). To further characterize the responding TI, we determined the frequency of pretransplant IL-2-secreting TI-precursors (TI-p) between eight HLA-A, - B, -C, -DR, and -DQ-identical sibling donor-host pairs in both the graft-versus-host (GVH) and the host-versus-graft (HVG) direction. High frequencies of pretransplant host-reactive donor TI-p (1/18,000 to 1/49,000) were detectable in five patients with grade II acute GVHD. Donor-reactive host TI-p (1/3,700 to 1/31,000) were observed in previously in vivo primed (n = 5) and unprimed (n = 1) patients. In two pairs tested after previous in vivo priming, pretransplant donor- reactive host TI-p were highly enriched within the CD45RO+ memory T- cell subset. Previously unprimed host-reactive donor TI-p occurred in almost equal frequencies within CD45RO+ and CD45RO- T cells. Both CD4+ and CD8+ T-cell subsets contributed in comparable frequencies to host- and donor-reactive TI-p. Recognition of minor histocompatibility (mH) antigens by CD8+ TI-p appeared to be class I major histocompatibility complex (MHC)-restricted, whereas CD4+ TI-p operated in a class II (HLA- DR) MHC-restricted fashion. Even between oligonucleotide-defined HLA- DPB1-disparate sibling donor-host pairs (n = 3), either responding T- cell subset was found to recognize cellularly defined mH antigens. These data indicate that various T-cell subsets contribute to host- and donor-reactive IL-2-secreting TI in allogeneic sibling BMT.

Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2560-2569 ◽  
Author(s):  
M Sykes ◽  
MW Harty ◽  
GL Szot ◽  
DA Pearson

Abstract We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)- promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4–2. BALB/c mice receiving 2.5 x 10(5) 2B-4–2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5- day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 225-225
Author(s):  
Kazuyuki Murase ◽  
Yutaka Kawano ◽  
Jeremy Ryan ◽  
Ken-ichi Matsuoka ◽  
Gregory Bascug ◽  
...  

Abstract Abstract 225 CD4+CD25+Foxp3+ regulatory T cells (Treg) are known to play a central role in the maintenance of self-tolerance and immune homeostasis. After allogeneic stem cell transplantation, impaired recovery of Treg is associated with the development of cGVHD. Interleukin-2 (IL-2) is a critical regulator of Treg development, expansion and survival and lack of IL-2 results in Treg deficiency. In patients with cGVHD, we previously demonstrated that Treg proliferate at high levels but this subset is also highly susceptible to apoptosis leading to inadequate Treg numbers (Matsuoka et al. JCI 2010). We also reported that low-dose IL-2 administration resulted in selective expansion of Treg in vivo and clinical improvement of cGVHD (Koreth et al. NEJM 2011). To identify mechanisms responsible for increased Treg susceptibility to apoptosis in cGVHD we used a new flow cytometry-based assay to measure mitochondrial membrane depolarization in response to a panel of pro-apoptotic BH3 peptides (BIM, BID, BAD, NOXA, PUMA, BMF, HRK). This assessment allowed us to compare BH3 peptide-induced mitochondrial membrane depolarization (“priming”) in different T cell subsets, including CD4 Treg, conventional CD4 T cells (CD4 Tcon), and CD8 T cells. Expression of Bcl-2, CD95 and Ki67 were also studied in each T cell subset. We studied peripheral blood samples from 36 patients with hematologic malignancies (median age 59 yr) who are > 2 years post HSCT (27 patients with cGVHD and 9 patients without cGVHD) and 15 patients who received daily subcutaneous IL-2 for 8 weeks for treatment of steroid-refractory cGvHD. Severity of cGVHD was classified according to NIH criteria. In patients without cGVHD, BH3 priming was similar in all 3 T cell subsets (CD4 Treg, CD4 Tcon and CD8). In patients with cGVHD, CD4 Treg were more primed than CD4 Tcon when challenged with BIM, BAD, PUMA, BMF and the combination of BAD + NOXA peptides (p<0.01 – 0.0001). Treg were more primed than CD8 T cells when challenged with PUMA peptide (p<0.0001), but priming in Treg and CD8 T cells was similar for other BH3 peptides in patients with cGVHD. We also compared BH3 priming of each T cell subset in patients with different grades of cGVHD. When challenged with BH3 peptides, Treg, Tcon and CD8 T cells were less primed in patients with severe cGVHD. In patients with cGVHD, Treg expressed higher levels of Ki-67, higher levels of CD95 and lower levels of Bcl-2 than Tcon. Expression of CD95 did not vary with severity of GVHD in any T cell subset, but expression of Bcl-2 was significantly increased in all subsets in patients with severe cGVHD. Increased BH3 priming and high expression of CD95 indicate that Treg are more susceptible to apoptosis than Tcon in cGVHD. However, both Treg and Tcon become less primed and Bcl-2 levels increase in severe cGVHD suggesting that these cells are less susceptible to mitochondrial pathway apoptosis. Since the total number of Treg and Tcon are significantly reduced in patients with cGVHD, these findings suggest that the remaining circulating cells are relatively resistant to mitochondrial pathway apoptosis. CD95 expression in Treg remains high indicating no change in death receptor pathway apoptosis. Daily treatment with low-dose IL-2 for 8 weeks selectively expands Treg in vivo in patients with severe cGVHD. As the number of Treg increase, BH3 profiling shows that these cells gradually become more primed and therefore more susceptible to mitochondrial pathway apoptosis. Taken together, these studies help define the complex and distinct pathways that regulate survival in different T cell subsets and changes in these pathways that occur in patients with chronic GVHD. These pathways play important roles in the maintenance of T cell homeostasis and targeting these complex pathways can provide new opportunities to promote immune tolerance after allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2560-2569 ◽  
Author(s):  
M Sykes ◽  
MW Harty ◽  
GL Szot ◽  
DA Pearson

We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)- promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4–2. BALB/c mice receiving 2.5 x 10(5) 2B-4–2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5- day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.


2020 ◽  
Vol 117 (36) ◽  
pp. 22367-22377
Author(s):  
Claire L. McIntyre ◽  
Leticia Monin ◽  
Jesse C. Rop ◽  
Thomas D. Otto ◽  
Carl S. Goodyear ◽  
...  

The γδ T cells reside predominantly at barrier sites and play essential roles in immune protection against infection and cancer. Despite recent advances in the development of γδ T cell immunotherapy, our understanding of the basic biology of these cells, including how their numbers are regulated in vivo, remains poor. This is particularly true for tissue-resident γδ T cells. We have identified the β2family of integrins as regulators of γδ T cells. β2-integrin–deficient mice displayed a striking increase in numbers of IL-17–producing Vγ6Vδ1+γδ T cells in the lungs, uterus, and circulation. Thymic development of this population was normal. However, single-cell RNA sequencing revealed the enrichment of genes associated with T cell survival and proliferation specifically in β2-integrin–deficient IL-17+cells compared to their wild-type counterparts. Indeed, β2-integrin–deficient Vγ6+cells from the lungs showed reduced apoptosis ex vivo, suggesting that increased survival contributes to the accumulation of these cells in β2-integrin–deficient tissues. Furthermore, our data revealed an unexpected role for β2integrins in promoting the thymic development of the IFNγ-producing CD27+Vγ4+γδ T cell subset. Together, our data reveal that β2integrins are important regulators of γδ T cell homeostasis, inhibiting the survival of IL-17–producing Vγ6Vδ1+cells and promoting the thymic development of the IFNγ-producing Vγ4+subset. Our study introduces unprecedented mechanisms of control for γδ T cell subsets.


1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3815-3825 ◽  
Author(s):  
BR Blazar ◽  
PA Taylor ◽  
PS Linsley ◽  
DA Vallera

We tested whether the in vivo infusion of recombinant, soluble CTLA4 fused with Ig heavy chains, as a surrogate ligand used to block CD28/CTLA4 T-cell costimulation, could prevent efficient T-cell activation and thereby reduce graft-versus-host disease (GVHD). Lethally irradiated B10.BR recipients of major histocompatibility complex disparate C57BL/6 donor grafts received intraperitoneal injections of human CTLA4-Ig (hCTLA4-Ig) or murine CTLA4-Ig (mCTLA4-Ig) in various doses and schedules beginning on day -1 or day 0 of bone marrow transplantation (BMT). In all five experiments, recipients of CTLA4-Ig had a significantly higher actuarial survival rate compared to mice injected with an irrelevant antibody control (L6) or saline alone. Survival rates in recipients of hL6 or PBS were 0% at 29 to 45 days post-BMT. In recipients of CTLA4-Ig, survival rates were as high as 63% mice surviving 3 months post-BMT. However, protection was somewhat variable and recipients of CTLA4-Ig were not GVHD-free by body weight, clinical appearance, and histopathologic examination. There were no significant differences in the survival rates in comparing injection dose, injection duration, or species of CTLA4-Ig (hCTLA4-Ig v mCTLA4- Ig). Splenic and peripheral blood flow cytometry studies of long-term hCTLA4-Ig-injected survivors showed a significant peripheral B-cell and CD4+ T-cell lymphopenia, consistent with GVHD. A kinetic study of splenic reconstitution was performed in mice that received hCTLA4-Ig and showed that mature splenic localized CD8+ T-cell repopulation was not significantly different in recipients of hCTLA4-Ig compared with hL6, despite the significant increase in actuarial survival rate in that experiment. These data suggest that the beneficial effect of hCTLA4-Ig on survival is not mediated by interfering with mature donor- derived T-cell repopulation post-BMT. Neither hCTLA4-Ig nor mCTLA4-Ig interfered with hematopoietic recovery post-BMT. We conclude that CTLA4- Ig (most likely in combination with other agents) may represent an important new modality for GVHD prevention.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1974 ◽  
Author(s):  
Linde Dekker ◽  
Coco de Koning ◽  
Caroline Lindemans ◽  
Stefan Nierkens

Allogeneic (allo) hematopoietic cell transplantation (HCT) is the only curative treatment option for patients suffering from chemotherapy-refractory or relapsed hematological malignancies. The occurrence of morbidity and mortality after allo-HCT is still high. This is partly correlated with the immunological recovery of the T cell subsets, of which the dynamics and relations to complications are still poorly understood. Detailed information on T cell subset recovery is crucial to provide tools for better prediction and modulation of adverse events. Here, we review the current knowledge regarding CD4+ and CD8+ T cells, γδ T cells, iNKT cells, Treg cells, MAIT cells and naive and memory T cell reconstitution, as well as their relations to outcome, considering different cell sources and immunosuppressive therapies. We conclude that the T cell subsets reconstitute in different ways and are associated with distinct adverse and beneficial events; however, adequate reconstitution of all the subsets is associated with better overall survival. Although the exact mechanisms involved in the reconstitution of each T cell subset and their associations with allo-HCT outcome need to be further elucidated, the data and suggestions presented here point towards the development of individualized approaches to improve their reconstitution. This includes the modulation of immunotherapeutic interventions based on more detailed immune monitoring, aiming to improve overall survival changes.


2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


1994 ◽  
Vol 180 (3) ◽  
pp. 1097-1106 ◽  
Author(s):  
O Lantz ◽  
A Bendelac

The mouse thymus contains a mature T cell subset that is distinguishable from the mainstream thymocytes by several characteristics. It is restricted in its usage of T cell receptor (TCR) V beta genes to V beta 8, V beta 7, and V beta 2. Its surface phenotype is that of activated/memory cells. It carries the natural killer NK1.1 surface marker. Furthermore, though it consists entirely of CD4+ and CD4-8- cells, its selection in the thymus depends solely upon major histocompatibility complex (MHC) class I expression by cells of hematopoietic origin. Forced persistence of CD8, in fact, imparts negative selection. Here, we have studied the TCR repertoire of this subset and found that, whereas the beta chain V-D-J junctions are quite variable, a single invariant alpha chain V alpha 14-J281 is used by a majority of the TCRs. This surprisingly restricted usage of the V alpha 14-J281 alpha chain is dependent on MHC class I expression, but independent of the MHC haplotype. In humans, a similar unusual population including CD4-8- cells can also be found that uses a strikingly homologous, invariant alpha chain V alpha 24-JQ. Thus, this unique V alpha-J alpha combination has been conserved in both species, conferring specificity to some shared nonpolymorphic MHC class I/peptide self-ligand(s). This implies that the T cell subset that it defines has a specialized and important role, perhaps related to its unique ability to secrete a large set of lymphokines including interleukin 4, upon primary stimulation in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document