scholarly journals Differentiation of early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis

Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 487-494 ◽  
Author(s):  
MM Kawano ◽  
K Mihara ◽  
N Huang ◽  
T Tsujimoto ◽  
A Kuramoto

Abstract The bone marrow (BM) is well known to be the major site of Ig production in secondary immune responses; thus, the microenvironment of BM is considered to be essential for final differentiation of plasma cells. We identified in the peripheral blood (PB) early plasma cells (CD38++CD19+VLA-5-) committed to entering the BM. The sorted early plasma cells rapidly entered apoptosis in vitro, but these cells could survive and further differentiate into mature plasma cells (CD38 CD19+) just as BM plasma cells in the presence of a BM-derived stromal cell line (KM-102). Culture supernatants of KM-102 cell lines could also support survival of these cells, and antibody to interleukin-6 (IL-6) completely blocked the effect of these supernatants. Furthermore, recombinant IL-6, but not IL-1 or IL-3, could support their survival and their differentiation into mature plasma cells (CD38 CD19+VLA-5+) with expression of VLA-5 mRNA. Therefore, here is direct evidence that early plasma cells found in the PB differentiated into mature plasma cells with stromal cell-derived IL-6 in vitro; thus, BM stromal cells control the final checkpoint of plasma cell differentiation with secretion of IL-6 in the BM.

Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 487-494 ◽  
Author(s):  
MM Kawano ◽  
K Mihara ◽  
N Huang ◽  
T Tsujimoto ◽  
A Kuramoto

The bone marrow (BM) is well known to be the major site of Ig production in secondary immune responses; thus, the microenvironment of BM is considered to be essential for final differentiation of plasma cells. We identified in the peripheral blood (PB) early plasma cells (CD38++CD19+VLA-5-) committed to entering the BM. The sorted early plasma cells rapidly entered apoptosis in vitro, but these cells could survive and further differentiate into mature plasma cells (CD38 CD19+) just as BM plasma cells in the presence of a BM-derived stromal cell line (KM-102). Culture supernatants of KM-102 cell lines could also support survival of these cells, and antibody to interleukin-6 (IL-6) completely blocked the effect of these supernatants. Furthermore, recombinant IL-6, but not IL-1 or IL-3, could support their survival and their differentiation into mature plasma cells (CD38 CD19+VLA-5+) with expression of VLA-5 mRNA. Therefore, here is direct evidence that early plasma cells found in the PB differentiated into mature plasma cells with stromal cell-derived IL-6 in vitro; thus, BM stromal cells control the final checkpoint of plasma cell differentiation with secretion of IL-6 in the BM.


2013 ◽  
Vol 18 (6) ◽  
pp. 637-646 ◽  
Author(s):  
Kristine Misund ◽  
Katarzyna A. Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne C. G. Klein ◽  
...  

The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell–induced protection against common myeloma drugs is also observed with this method.


Blood ◽  
1995 ◽  
Vol 85 (12) ◽  
pp. 3704-3712 ◽  
Author(s):  
N Huang ◽  
MM Kawano ◽  
MS Mahmoud ◽  
K Mihara ◽  
T Tsujimoto ◽  
...  

The mature myeloma cells express very late antigen 5 (VLA-5) and MPC-1 antigens on their surface and adhere to bone marrow (BM) stromal cells more tightly than the VLA-5-MPC-1-immature myeloma cells in vitro. The VLA-5 and MPC-1 antigens possibly function as two of the molecules responsible for interaction of mature myeloma cells with BM stromal cells. However, the immature myeloma cells do interact with BM stromal cells, and it is unclear which adhesion molecules mediate their interaction. In this study, we found that both immature and mature myeloma cells expressed CD21, an adhesion molecule known to bind to CD23. CD21 was also detected on normal plasma cells. To evaluate the role of CD21 expression on myeloma cells, two myeloma cell lines, NOP-2 (VLA-5-MPC-1-) and KMS-5 (VLA-5+MPC-1+), were used as representatives of immature and mature myeloma cell types, respectively, and an adhesion assay was performed between the myeloma cell lines and BM stromal cells. Antibody-blocking results showed that adhesion of the mature type KMS-5 to KM102, a human BM-derived stromal cell line, or to short-term cultured BM primary stromal cells was inhibited by monoclonal antibodies (MoAbs) against CD21, VLA-5, and MPC-1, and inhibition of adhesion of the immature type NOP-2 to KM102 by the anti-CD21 MoAb was observed as well. Furthermore, CD23 was detected on KM102. Treatment of KM102 with an anti-CD23 MoAb also inhibited adhesion of either KMS-5 or NOP-2 to KM102. Therefore, we propose that CD21 expressed on myeloma cells likely functions as a molecule responsible for the interaction of immature myeloma cells as well as mature myeloma cells with BM stromal cells, and CD23 may be the ligand on the stromal cells for the CD21-mediated adhesion.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1926-1932 ◽  
Author(s):  
Ryan E. Mudry ◽  
James E. Fortney ◽  
Teresa York ◽  
Brett M. Hall ◽  
Laura F. Gibson

Approximately 20% of B-lineage acute lymphoblastic leukemias are not cured by traditional chemotherapy. The possibility was examined that residual leukemic cells that potentially contribute to relapse are harbored in association with fibroblastic stromal cells in the bone marrow. Modulation of cytarabine (Ara-C) and etoposide (VP-16) efficacy by bone marrow stromal cells in vitro was investigated. Stromal cell coculture was shown to sustain the proliferation of B-lineage leukemic cells and to reduce leukemic cell apoptosis when exposed to Ara-C or VP-16. Direct contact with stromal cells was essential for the protection of leukemic cells during chemotherapy, whereas soluble factors had negligible effect. Specifically, signaling mediated through interaction with the stromal cell adhesion molecule VCAM-1 was required to maintain the maximum viability of leukemic cells during Ara-C and VP-16 exposure. In contrast, the interaction of leukemic cells with fibronectin did not confer significant resistance to either chemotherapeutic agent. These observations suggest a role for the bone marrow microenvironment in modulating the response of B-lineage leukemic cells to Ara-C or VP-16, and they indicate specific molecular interactions that may be important in determining the sensitivity of leukemic cells to treatment.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1926-1932 ◽  
Author(s):  
Ryan E. Mudry ◽  
James E. Fortney ◽  
Teresa York ◽  
Brett M. Hall ◽  
Laura F. Gibson

Abstract Approximately 20% of B-lineage acute lymphoblastic leukemias are not cured by traditional chemotherapy. The possibility was examined that residual leukemic cells that potentially contribute to relapse are harbored in association with fibroblastic stromal cells in the bone marrow. Modulation of cytarabine (Ara-C) and etoposide (VP-16) efficacy by bone marrow stromal cells in vitro was investigated. Stromal cell coculture was shown to sustain the proliferation of B-lineage leukemic cells and to reduce leukemic cell apoptosis when exposed to Ara-C or VP-16. Direct contact with stromal cells was essential for the protection of leukemic cells during chemotherapy, whereas soluble factors had negligible effect. Specifically, signaling mediated through interaction with the stromal cell adhesion molecule VCAM-1 was required to maintain the maximum viability of leukemic cells during Ara-C and VP-16 exposure. In contrast, the interaction of leukemic cells with fibronectin did not confer significant resistance to either chemotherapeutic agent. These observations suggest a role for the bone marrow microenvironment in modulating the response of B-lineage leukemic cells to Ara-C or VP-16, and they indicate specific molecular interactions that may be important in determining the sensitivity of leukemic cells to treatment.


Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 38-45 ◽  
Author(s):  
K Dorshkind ◽  
L Green ◽  
A Godwin ◽  
WH Fletcher

Several morphologic studies have suggested that gap junctions exist between bone marrow stromal cells. This possibility was examined by analysis of stromal cells present in the adherent layer of primary long- term lymphoid bone marrow cultures and in additional studies using a stromal cell line. Results showing that the fluorescent dye lucifer yellow, when microinjected into a single stromal cell, transferred between most other contacting stroma and that stromal cells were electronically coupled provided support that cell-cell communication occurs between these microenvironmental elements. Additional studies showed that transcripts for connexin (Cx) 43, but not for Cx26 or Cx32, were present in a stromal cell line. To examine the potential for regulated cell-cell communication between the stroma, cells were treated with interleukin-1 (IL-1), a cytokine known to affect stromal cell function, and the effects on dye transfer were examined. IL-1 treatment resulted in a reversible decrease in the ability of dye to transfer between stromal cells in contact. Taken together, these studies show that gap junctions exist between stromal cells and that their permeability can be regulated. However, gap junction-mediated cell-cell communication could not be shown between the stroma and developing lymphoid cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1764-1764
Author(s):  
Hendrik W van Deventer ◽  
Todd Hoffert ◽  
Michelle L West ◽  
Qing Ping Wu ◽  
Jonathan S Serody

Abstract Abstract 1764 Background: Chemotherapy resistance in chronic lymphocytic leukemia (CLL) is in part mediated by anti-apoptotic signals produced by bone marrow stromal cells. Identifying these signals is the first step to overcoming this resistance. ERDR1 was initially described as an inducer of hemoglobinization. We now present evidence that it inhibits apoptosis of CLL cells. Methods/Results: Previously, we showed that wild type (WT) but not CCR5−/− mesenchymal cells increase pulmonary melanoma metastasis in CCR5−/− mice. This observation led us to compare gene expression in the lungs of these mice. Using an Affymetrix expression array, we found Erdr1 was differentially expressed in the wild type mice. To show that the increase in metastasis was mediated by Erdr1, we transferred WT pulmonary mesenchymal cells transfected with Erdr1 shRNA or non-targeted control shRNA. CCR5−/− mice receiving Erdr1 knockdown mesenchymal cells had a 27.3% to 37% decrease in metastasis compared to animals receiving control transfected cells (p<0.01). One explanation for the decrease in metastasis would be a failure of the Erdr1 knockdown cells to survive in the lung. Since the knockdown and control vectors express EGFP, we were able to compare the quantity of transfected cells surviving in the lung by applying an EGFP ELISA to lung homogenates. These experiments showed no difference in the number of surviving mesenchymal cells. These results suggested Erdr1 was acting as a pro-survival factor for the melanoma cells. Since ERDR1 expression is the highest in the bone marrow, we compared the survival of CLL cells co-cultured with control and Erdr1 knockdown cells. In these experiments, stable Erdr1 knockdown and control clones were selected after the transfection of the bone marrow stromal cell line M2-10B4. Peripheral blood samples were then collected from 10 untreated CLL patients and co-cultured with these stromal cell lines. After 72 and 96 hours, total cell counts and apoptosis were measured using Annexin V/PI. At both time points, the cell counts were higher when the CLL cells were co-cultured with control cell lines compared to Erdr1 knockdown lines (OR 1.88 ± 0.27, 2.52 ± 0.66 respectively). The increase in total cell number was associated with a decrease in the percentage of apoptotic cells (OR 0.69 ± 0.18, 0.58 ± 0.12 respectively). Since Erdr1 was differentially expressed in WT compared to CCR5−/− mice, we considered the regulation of this gene by chemokine agonists. In these experiments, 100 ng/ml of CCL4 was added to WT and CCR5−/− PMCs and mRNA was harvested at 12, 24, and 48 hours. Using real-time PCR, we found that Erdr1 expression was increased compared to baseline in the WT mesenchymal cells by 1.33 fold ± 0.06 (p < 0.05) after 24 hours. By 48 hours, expression had increased by 3.36 fold ± 0.14 (p < 0.001). As expected, CCL4 did not increase expression of Erdr1 in CCR5−/− mesenchymal cells. Since Erdr1 is associated with hemoglobinization, we also investigated the effect of hypoxia on Erdr1 expression. In these experiments, deferoxamine was added to the stromal cell line M2-10B4 at varying concentrations. Significant fold increases in Erdr1 expression were seen after 48 hours of 1.43 ± 0.10 (50nM), 1.96 ± 0.08, (100nM), and 2.44 ± 0.01 (200nM). Implications for the treatment of human disease: Other investigators have shown that stromal cells such as nurse-like cells and CLL cells can interact to induce CCL4 and promote CLL cell survival. Our work suggests a novel pathway by which this may take place. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1373-1373
Author(s):  
Kristine Misund ◽  
Katarzyna Anna Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne Klein ◽  
...  

Abstract Abstract 1373 The aim of this work was to establish a robust and simple method for the measurement of drug sensitivity in myeloma cells under conditions mimicking aspects of the bone marrow microenvironment. In particular we wanted to measure drug sensitivity in myeloma cells cultivated in the presence of stromal cells. The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity, and it is generally believed that growth and survival of myeloma cells is critically dependent on the bone marrow microenvironment. Bone marrow stromal cells (BMSC) have been shown to protect myeloma cells from common cytostatic or cytotoxic drugs in vitro. Common in vitro assays used for high-throughput drug screening cannot easily discriminate between stromal and tumor cell responses in co-cultures. Although a few recent studies have overcome this problem (Ramasamy K. et al., 157(5):564–79,2012, McMillin D. et al., 16(4):483–9, 2010), the application of stable transfection for labeling of cells limits the practical application of these co-culture studies to cell lines, excluding primary myeloma cells that inherently may be hard to transduce even by retroviral vectors. Here, we analyzed survival of myeloma cells co-cultured with BMSC using an automated fluorescence microscope, ScanR. ScanR is a microscope based screening station. By staining the cell nuclei with DRAQ5, we were able to discriminate between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The main advantages of this method are the non-necessity of cell manipulation before co-culture and the low number of myeloma cells (5000 primary cells) that are needed per measurement, which makes the method ideal for experiments with primary myeloma cells. In fact, the analysis was easier and more robust when using slowly growing cells, i.e. by using primary myeloma cells compared to more rapidly proliferating myeloma cell lines. This method should be well-suited for high throughput analysis, as the cells are stained in situ with no washing, centrifugation, or fixation steps before analysis. The method was compared to a conventional method for detecting cell viability; flow cytometry where annexin V labeling was used to detect apoptotic cells. As shown in figure 1, the dose-response curves obtained for ANBL-6 cells treated with different doses of melphalan were similar and showed the same trends for both methods. However, the effects of melphalan treatment were more evident analyzed by the ScanR system than by flow cytometry (EC50 YO-PRO-1 = 11μM versus EC50Annexin V= 15μM). The stromal cell population applied in this study was able to support IL-6 dependent myeloma cell lines without addition of IL-6. This as IL-6 dependent INA-6 cells cultivated in the presence of BMSC survived in the absence of added IL-6. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell-induced protection against common myeloma drugs was also observed with this method. For instance, experiments with primary myeloma cells from patient MM7, showed that in the presence of BMSC, the EC50 for the common myeloma drug cyclophosphamide was increased from 5 μM to approximately 10 μM (figure 2). Figure 1 Figure 1. Figure 2 Figure 2. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document