Bone Marrow Stromal Cells Inhibit Apoptosis of Chronic Lymphocytic Leukemia Cells (CLL) by Expressing Erythroid Differentiation Regulator 1 (ERDR1)

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1764-1764
Author(s):  
Hendrik W van Deventer ◽  
Todd Hoffert ◽  
Michelle L West ◽  
Qing Ping Wu ◽  
Jonathan S Serody

Abstract Abstract 1764 Background: Chemotherapy resistance in chronic lymphocytic leukemia (CLL) is in part mediated by anti-apoptotic signals produced by bone marrow stromal cells. Identifying these signals is the first step to overcoming this resistance. ERDR1 was initially described as an inducer of hemoglobinization. We now present evidence that it inhibits apoptosis of CLL cells. Methods/Results: Previously, we showed that wild type (WT) but not CCR5−/− mesenchymal cells increase pulmonary melanoma metastasis in CCR5−/− mice. This observation led us to compare gene expression in the lungs of these mice. Using an Affymetrix expression array, we found Erdr1 was differentially expressed in the wild type mice. To show that the increase in metastasis was mediated by Erdr1, we transferred WT pulmonary mesenchymal cells transfected with Erdr1 shRNA or non-targeted control shRNA. CCR5−/− mice receiving Erdr1 knockdown mesenchymal cells had a 27.3% to 37% decrease in metastasis compared to animals receiving control transfected cells (p<0.01). One explanation for the decrease in metastasis would be a failure of the Erdr1 knockdown cells to survive in the lung. Since the knockdown and control vectors express EGFP, we were able to compare the quantity of transfected cells surviving in the lung by applying an EGFP ELISA to lung homogenates. These experiments showed no difference in the number of surviving mesenchymal cells. These results suggested Erdr1 was acting as a pro-survival factor for the melanoma cells. Since ERDR1 expression is the highest in the bone marrow, we compared the survival of CLL cells co-cultured with control and Erdr1 knockdown cells. In these experiments, stable Erdr1 knockdown and control clones were selected after the transfection of the bone marrow stromal cell line M2-10B4. Peripheral blood samples were then collected from 10 untreated CLL patients and co-cultured with these stromal cell lines. After 72 and 96 hours, total cell counts and apoptosis were measured using Annexin V/PI. At both time points, the cell counts were higher when the CLL cells were co-cultured with control cell lines compared to Erdr1 knockdown lines (OR 1.88 ± 0.27, 2.52 ± 0.66 respectively). The increase in total cell number was associated with a decrease in the percentage of apoptotic cells (OR 0.69 ± 0.18, 0.58 ± 0.12 respectively). Since Erdr1 was differentially expressed in WT compared to CCR5−/− mice, we considered the regulation of this gene by chemokine agonists. In these experiments, 100 ng/ml of CCL4 was added to WT and CCR5−/− PMCs and mRNA was harvested at 12, 24, and 48 hours. Using real-time PCR, we found that Erdr1 expression was increased compared to baseline in the WT mesenchymal cells by 1.33 fold ± 0.06 (p < 0.05) after 24 hours. By 48 hours, expression had increased by 3.36 fold ± 0.14 (p < 0.001). As expected, CCL4 did not increase expression of Erdr1 in CCR5−/− mesenchymal cells. Since Erdr1 is associated with hemoglobinization, we also investigated the effect of hypoxia on Erdr1 expression. In these experiments, deferoxamine was added to the stromal cell line M2-10B4 at varying concentrations. Significant fold increases in Erdr1 expression were seen after 48 hours of 1.43 ± 0.10 (50nM), 1.96 ± 0.08, (100nM), and 2.44 ± 0.01 (200nM). Implications for the treatment of human disease: Other investigators have shown that stromal cells such as nurse-like cells and CLL cells can interact to induce CCL4 and promote CLL cell survival. Our work suggests a novel pathway by which this may take place. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1372-1372
Author(s):  
Hendrik W. Van Deventer ◽  
Robert Mango ◽  
Jonathan Serody

Abstract Abstract 1372 Background: Chemotherapy resistance in chronic lymphocytic leukemia (CLL) can be mediated by anti-apoptotic signals produced by stromal or nurse-like cells. Developing strategies to overcome this resistance is hindered by the lack of suitable “stromal” targets responsible for these signals. We have discovered that erythroid differentiation regulator 1 (ERDR1) may be a candidate target for such a strategy. In this study, we show Erdr1 is generated by several stromal cell types including bone marrow stromal cells, fibrocytes, and nurse-like cells. Furthermore, inhibition of stroma-generated Erdr1 results in increased apoptosis of co-cultured CLL cells. Methods/Results: We initially identified Erdr1 on an Affymetrix array that compared the gene expression of wild type and CCR5-/- mice with pulmonary metastasis. The increased expression of Erdr1 in the wild type mice was particularly pronounced in the pulmonary mesenchymal cells. Therefore, these cells were transfected with one of two shRNAs (shRNA #9 or shRNA#11) and the survival of these cells was compared with mesenchymal cells transfected with a non-targeted control vector. After 15 days in culture, the control cells expanded normally; however, no significant expansion was seen in either the shRNA#9 or shRNA#11 transfected cells. These differences in cellular expansion were associated with differences in apoptosis. 21.4+1.6% of the Erdr1 knockdown cells were annexin V+ compared to 11.2+1.9% of the non-targeted control (p<0.03). Using GFP as a marker for transfection, we were also able to show that knockdown of Erdr1 increased the apoptosis of surrounding non-transfected mesenchymal cells. Thus, Erdr1 is a critical protein for the survival of stromal cells. Further analysis of the mesenchymal cell subpopulations revealed the greatest expression of Erdr1 in the CD45+, thy1.1+/− fibrocytes. When compared to CD45- fibroblasts, the fibrocytes expressed CCR5 and increased Erdr1 expression by 14.2+/−2.9 fold when treated with the CCR5 ligand CCL4. Given the similarities between fibrocytes and nurse-like cells, we went on to measure the effect of Erdr1 inhibition on CLL cells. In these experiments, stable Erdr1 knockdown and control clones were selected after the transfection of the bone marrow stromal cell line M2-10B4. These clones were then co-cultured with primary CLL cells. At 96 hours, leukemia cells co-cultured with the control lines had expanded by 1.33 + 0.9 compared to 0.74 + 0.22 fold in the knock-down lines (p<0.03). As before, the lack of cellular expansion was associated with an increase in apoptosis. To further show the relevance of these findings to CLL, we demonstrated that human fibrocytes and nurse-like cells expressed mRNA and protein for ERDR1 in all patient samples tested. Implications for the treatment of human disease: Our data demonstrate that ERDR1 is a critically important protein for the survival of nurse-like cells. These data suggest that targeting ERDR1 or the upstream pathway through CCR5 might be a novel approach for the treatment of CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 487-494 ◽  
Author(s):  
MM Kawano ◽  
K Mihara ◽  
N Huang ◽  
T Tsujimoto ◽  
A Kuramoto

The bone marrow (BM) is well known to be the major site of Ig production in secondary immune responses; thus, the microenvironment of BM is considered to be essential for final differentiation of plasma cells. We identified in the peripheral blood (PB) early plasma cells (CD38++CD19+VLA-5-) committed to entering the BM. The sorted early plasma cells rapidly entered apoptosis in vitro, but these cells could survive and further differentiate into mature plasma cells (CD38 CD19+) just as BM plasma cells in the presence of a BM-derived stromal cell line (KM-102). Culture supernatants of KM-102 cell lines could also support survival of these cells, and antibody to interleukin-6 (IL-6) completely blocked the effect of these supernatants. Furthermore, recombinant IL-6, but not IL-1 or IL-3, could support their survival and their differentiation into mature plasma cells (CD38 CD19+VLA-5+) with expression of VLA-5 mRNA. Therefore, here is direct evidence that early plasma cells found in the PB differentiated into mature plasma cells with stromal cell-derived IL-6 in vitro; thus, BM stromal cells control the final checkpoint of plasma cell differentiation with secretion of IL-6 in the BM.


Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 38-45 ◽  
Author(s):  
K Dorshkind ◽  
L Green ◽  
A Godwin ◽  
WH Fletcher

Several morphologic studies have suggested that gap junctions exist between bone marrow stromal cells. This possibility was examined by analysis of stromal cells present in the adherent layer of primary long- term lymphoid bone marrow cultures and in additional studies using a stromal cell line. Results showing that the fluorescent dye lucifer yellow, when microinjected into a single stromal cell, transferred between most other contacting stroma and that stromal cells were electronically coupled provided support that cell-cell communication occurs between these microenvironmental elements. Additional studies showed that transcripts for connexin (Cx) 43, but not for Cx26 or Cx32, were present in a stromal cell line. To examine the potential for regulated cell-cell communication between the stroma, cells were treated with interleukin-1 (IL-1), a cytokine known to affect stromal cell function, and the effects on dye transfer were examined. IL-1 treatment resulted in a reversible decrease in the ability of dye to transfer between stromal cells in contact. Taken together, these studies show that gap junctions exist between stromal cells and that their permeability can be regulated. However, gap junction-mediated cell-cell communication could not be shown between the stroma and developing lymphoid cells.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 487-494 ◽  
Author(s):  
MM Kawano ◽  
K Mihara ◽  
N Huang ◽  
T Tsujimoto ◽  
A Kuramoto

Abstract The bone marrow (BM) is well known to be the major site of Ig production in secondary immune responses; thus, the microenvironment of BM is considered to be essential for final differentiation of plasma cells. We identified in the peripheral blood (PB) early plasma cells (CD38++CD19+VLA-5-) committed to entering the BM. The sorted early plasma cells rapidly entered apoptosis in vitro, but these cells could survive and further differentiate into mature plasma cells (CD38 CD19+) just as BM plasma cells in the presence of a BM-derived stromal cell line (KM-102). Culture supernatants of KM-102 cell lines could also support survival of these cells, and antibody to interleukin-6 (IL-6) completely blocked the effect of these supernatants. Furthermore, recombinant IL-6, but not IL-1 or IL-3, could support their survival and their differentiation into mature plasma cells (CD38 CD19+VLA-5+) with expression of VLA-5 mRNA. Therefore, here is direct evidence that early plasma cells found in the PB differentiated into mature plasma cells with stromal cell-derived IL-6 in vitro; thus, BM stromal cells control the final checkpoint of plasma cell differentiation with secretion of IL-6 in the BM.


1997 ◽  
Vol 327 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Zofia DRZENIEK ◽  
Barbara SIEBERTZ ◽  
Georg STÖCKER ◽  
Ursula JUST ◽  
Wolfram OSTERTAG ◽  
...  

Proteoglycans of bone-marrow stromal cells and their extracellular matrix are important components of the haematopoietic microenvironment. Recently, several studies have indicated that they are involved in the interaction of haematopoietic stem and stromal cells. However, a detailed characterization of the heparan sulphate proteoglycans synthesized by bone-marrow stromal cells is still lacking. Here we report on the isolation and characterization of proteoglycans from the haematopoietic stromal cell line MS-5, that efficiently supports the growth and differentiation of human and murine haematopoietic progenitor cells. Biochemical characterization of purified proteoglycans revealed that the haematopoietic stromal cell line MS-5 synthesizes, in addition to chondroitin sulphate proteoglycans, several different heparan sulphate proteoglycans. Immunochemical analysis, using specific antibodies against the different members of the syndecan family, glypican, betaglycan and perlecan, showed that MS-5 cells synthesize all these different heparan sulphate proteoglycans. These data were further supported by reverse-transcriptase PCR and confirmed by sequence and Northern blot analysis. The relative abundance of the different heparan sulphate proteoglycans was estimated on the protein and mRNA levels.


2013 ◽  
Vol 18 (6) ◽  
pp. 637-646 ◽  
Author(s):  
Kristine Misund ◽  
Katarzyna A. Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne C. G. Klein ◽  
...  

The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell–induced protection against common myeloma drugs is also observed with this method.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1436-1444 ◽  
Author(s):  
Y Shiota ◽  
JG Wilson ◽  
K Harjes ◽  
ED Zanjani ◽  
M Tavassoli

Abstract The adhesion of hematopoietic progenitor cells to bone marrow stromal cells is critical to hematopoiesis and involves multiple effector molecules. Stromal cell molecules that participate in this interaction were sought by analyzing the detergent-soluble membrane proteins of GBI/6 stromal cells that could be adsorbed by intact FDCP-1 progenitor cells. A single-chain protein from GBI/6 cells having an apparent molecular weight of 37 Kd was selectively adsorbed by FDCP-1 cells. This protein, designated p37, could be surface-radiolabeled and thus appeared to be exposed on the cell membrane. An apparently identical 37- Kd protein was expressed by three stromal cell lines, by Swiss 3T3 fibroblastic cells, and by FDCP-1 and FDCP-2 progenitor cells. p37 was selectively adsorbed from membrane lysates by a variety of murine hematopoietic cells, including erythrocytes, but not by human erythrocytes. Binding of p37 to cells was calcium-dependent, and was not affected by inhibitors of the hematopoietic homing receptor or the cell-binding or heparin-binding functions of fibronectin. It is proposed that p37 may be a novel adhesive molecule expressed on the surface of a variety of hematopoietic cells that could participate in both homotypic and heterotypic interactions of stromal and progenitor cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2328-2328
Author(s):  
Katja C. Weisel ◽  
Ying Gao ◽  
Jae-Hung Shieh ◽  
Lothar Kanz ◽  
Malcolm A.S. Moore

Abstract The aorta-gonads-mesonephros (AGM) region autonomously generates adult repopulating hematopoietic stem cells (HSC) in the mouse embryo and provides its own HSC-supportive microenvironment. Stromal cells from adult bone marrow, yolk sac, fetal liver and AGM have been used in coculture systems for analysing growth, maintenance and differentiation of hematopoietic stem cells. We generated &gt;100 cloned stromal cell lines from the AGM of 10.5 dpc mouse embryos. In previous studies, we tested these for support of murine adult and human cord blood (CB) CD34+ cells. We could demonstrate that 25 clones were superior to the MS5 bone marrow stromal cell line in supporting progenitor cell expansion of adult mouse bone marrow both, in 2ndry CFC and CAFC production. In addition we demonstrated that 5 AGM lines promoted in absence of exogenous growth factors the expansion of human CB cells with progenitor (CFC production for at least 5 weeks) and stem cell (repopulation of cocultured cells in NOD/SCID assay) function. Now, we could show that one of the isolated stromal cell lines (AGM-S62) is capable in differentiating undifferentiated murine embryonic stem (mES) cells into cells of the hematopoietic lineage. A sequential coculture of mES-cells with AGM-S62 showed production of CD41+ hematopoietic progenitor cells at day 10 as well as 2ndry CFC and CAFC production of day 10 suspension cells. Hematopoietic cell differentiation was comparable to standard OP9 differentiation assay. With these data, we can describe for the first time, that a stromal cell line other than OP9 can induce hematopoietic differentiation of undifferentiated mES cells. Hematopoietic support occurs independently of M-CSF deficiency, which is the characteristic of OP9 cells, because it is strongly expressed by AGM-S62. To evaluate genes responsible for hematopoietic cell support, we compared a supporting and a non-supporting AGM stromal cell line by microarray analysis. The cell line with hematopoietic support clearly showed a high expression of mesenchymal markers (laminins, thrombospondin-1) as well as characteristic genes for the early vascular smooth muscle phenotype (Eda). Both phenotypes are described for stromal cells with hematopoietic support generated from bone marrow and fetal liver. In addition, the analysed supporting AGM stromal cell line interestingly expressed genes important in early B-cell differentiation (osteoprotegerin, early B-cell factor 1, B-cell stimulating factor 3), which goes in line with data demonstrating early B-cell development in the AGM-region before etablishing of fetal liver hematopoiesis. Further studies will show the significance of single factors found to be expressed in microarray analyses. This unique source of &gt; 100 various cell lines will be of value in elucidating the molecular mechanisms regulating embryonic and adult hematopoiesis in mouse and man.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4734-4734
Author(s):  
Julie P. Goff ◽  
Tracy M. Dixon ◽  
Michael W. Epperly ◽  
Melissa Sprachman ◽  
Peter Wipf ◽  
...  

Abstract Abstract 4734 Thoracic irradiation of C57BL/6 mice leads to an acute reaction phase in the lungs characterized by increased cytokine production and inflammation days 1–14 post irradiation. This is followed by a latent period where inflammation, histologic appearance and cytokine response returns to control levels. The late reaction phase occurs 100+ days post irradiation and is characterized by organizing alveolitis/fibrosis and involves migration of marrow origin macrophages and proliferating mesenchymal stem cells (fibroblasts), a subpopulation which migrates from marrow to the lungs. To quantitate migration in real time, thoracic irradiated mice were either made chimeric for luciferase positive (luc+) whole marrow or were injected with cells from a positive luc+ bone marrow stromal cell line and serially imaged at day 7, 60 or 120 using an IVIS.. 200 Optical Imaging System. As a control for migration to the lung, another group of mice received 20Gy to the right hind leg and 1.5 ×106 luc+ bone marrow stromal cells i.p. Imaging of chimeric mice revealed luc+ cell lung migration only after day 120. C57BL/6NTac female mice that received 20Gy thoracic irradiation followed by an i.p. injection 1.5 × 106 luc+ positive bone marrow stromal cells revealed no migration of luc+ cells to the lungs at day 7 or day 60. Furthermore there was no migration to 20Gy irradiated leg at any timepoint. In marked contrast, at the time of the late reaction phase, at day 100, fibrosis was revealed as an increase in luc+ cell migration in lungs. The lung fibrosis model in C57BL/6 mice combined with live imaging allows sequential measurement of the effect of agents which may alter migration of bone marrow cells that contribute to radiation pulmonary fibrosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 430-430 ◽  
Author(s):  
Nicolas Severe ◽  
Murat Karabacak ◽  
Ninib Baryawno ◽  
Karin Gustafsson ◽  
Youmna Sami Kfoury ◽  
...  

Abstract The bone marrow niche is a heterogeneous tissue comprised of multiple cell types that collectively regulate hematopoiesis. It is thought to be a critical stress sensor, integrating information at the level of the organism down to signals at the level of the single cell. In so doing, the niche orchestrates hematopoietic stem and progenitor cell (HSPC) responses to organismal stress. However, most studies of the niche have depended on genetic marker or deletion studies that inherently limit analysis to the selected indicator genes or cells. While this has greatly enhanced our understanding of bone marrow function, it does not permit systems level evaluation of subgroups of cells and their relative response to a particular challenge. We therefore sought a less biased strategy to study bone marrow stromal cells and the cytokines they elaborate under homeostatic and stress conditions. We used Mass-Cytometry (CyTOF) to resolve protein levels at single cell resolution in mouse bone marrow. We established a panel of 36 antibodies: 20 surface and intracellular phenotypic markers, 12 cytokines regulating hematopoiesis, 1 marker of proliferation, 1 marker for DNA damage, 1 viability marker and 1 nucleated cell marker. We intentionally selected antibodies that recognize antigens already defined by others as bone marrow stromal markers. Freshly isolated non-hematopoietic cells from long bones and pelvis were analyzed and clustered into subgroups based on their protein expression signature. We applied k-means clustering using common markers to group bone marrow stromal cells into phenotypical subtypes. At steady state, analysis of over 20.000 mouse bone marrow stromal single-cells negative for the hematopoietic markers CD45 and Ter119 revealed 4 large clusters: an endothelial population expressing CD31, Sca1 and CD105, a mesenchymal stromal cell population expressing Sca1, CD140a, Nestin and LeptinR, a bone marrow stromal progenitor population expressing CD105, CD271 and Runx2 and a mature bone cell population expressing Osteocalcin and CD140a. Within these clusters, sub-populations were evident by adding CD106, CD90, CD73, Embigin, CD29, CD200, c-Kit and CD51. In total, 28 distinct populations of bone marrow stromal cells were identified based on their phenotypic signature. Only one cluster of cells was negative for all the markers we selected. Therefore, the complex heterogeneity of the bone marrow niche cells can be resolved to 28 subpopulations by single-cell protein analysis. Assessing the response of these groups to systemic challenges of medical relevance, we evaluated cells prior to whole body lethal irradiation (9.5Gy), one hour and one day later (the time of transplantation) and 3 days after irradiation (2d post transplantation) with and without transplanted cells. Notably, LeptinR+CD106+Sca1+ cells putatively essential for hematopoiesis and stem cell support were highly sensitive to and largely killed by irradiation. In contrast, endothelial cells and osteoblastic cells were resistant to irradiation. In particular, osteoblastic cells expressing osteocalcin (GFP+), embigin, NGFR and CD73 increased their expression of multiple hematopoietic cytokines including SDF-1, kit ligand, IL-6, G-CSF and TGF-b one day after irradiation. These data indicate that LeptinR+CD106+Sca1 stromal cells are unlikely to participate in HSPC engraftment post-irradiation while a subset of osteoblastic cells are. Unbiased single cell analysis can resolve subsets of bone marrow cells that respond differently to organismal stress. This method enables comprehensively quantifying subpopulation changes with specific challenges to begin defining the systems biology of the bone marrow niche. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document