scholarly journals Identification of B-cell growth factors (interleukin-14; high molecular weight-B-cell growth factors) in effusion fluids from patients with aggressive B-cell lymphomas

Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 283-293 ◽  
Author(s):  
R Ford ◽  
A Tamayo ◽  
B Martin ◽  
K Niu ◽  
K Claypool ◽  
...  

The molecular basis of neoplastic B-cell growth is complex and poorly understood. Cytokines have been postulated to contribute to neoplastic cell growth, and many in vitro studies have confirmed this prediction, but little is known about the in vivo role of these growth factors. We have examined the production of interleukin-14 (IL-14) (high molecular weight [HMW], B-cell growth factor [BCGF]) by aggressive intermediate (diffuse large cell) lymphomas of the B-cell type non-Hodgkin's lymphoma (NHL-B) in four patients with lymphomatous effusions. In these studies, IL-14 was detected in the effusion fluids by Western blots and IL-14 mRNA was constitutively expressed in the freshly isolated lymphoma cells that also expressed the receptor for IL-14 (IL14R). Lymphoma B cells placed at low serum and cell density proliferated in vitro to either purified IL-14 or IL-14 derived from effusion fluids. Antibodies to IL-14 removed the growth-stimulating cytokine(s) from the effusions. Cell lines developed from these patients produced IL-14 in vitro and antisense oligos to IL-14 blocked their growth in vitro. Thus, autocrine or paracrine production of IL-14 may play a significant role in the rapid proliferation of aggressive NHL-B. Interrupting this pathway could be a useful goal of therapy for patients resistant to conventional chemotherapy.

1985 ◽  
Vol 162 (4) ◽  
pp. 1319-1335 ◽  
Author(s):  
J L Ambrus ◽  
C H Jurgensen ◽  
E J Brown ◽  
A S Fauci

High molecular weight B cell growth factor (HMW-BCGF) produced by a T cell line was purified to homogeneity and demonstrated to bind specifically to activated human B cells. A monoclonal antibody to HMW-BCGF was developed that (a) specifically inhibited the activity of HMW-BCGF in enhancing B cell proliferation, (b) specifically bound to HMW-BCGF in Western blots, (c) specifically absorbed HMW-BCGF activity from culture supernatants, and (d) specifically absorbed an internally labeled protein from T-ALL supernatant which comigrates with HMW-BCGF on sodium dodecyl sulfate-polyacrylamide gels. This antibody should help in cloning the gene for HMW-BCGF and further exploring the physiologic roles of HMW-BCGF.


1988 ◽  
Vol 2 (1) ◽  
pp. 7-11 ◽  
Author(s):  
T. Nagakura ◽  
T. Onda ◽  
Y. likura ◽  
T. Endo ◽  
H. Nagakura ◽  
...  

High molecular weight neutrophil chemotactic activity has been identified in resected human nasal polyps, inferior turbinates, and nasal secretions following antigen challenge. The estimated molecular weight, by gel filtration chromatography, was approximately 600,000. However, a heterogeneity of molecular weight in some patients was recognized. Our results suggest a possible role for high molecular weight-neutrophil chemotactic activity in the pathogenesis of hypersensitivity in the human nasal cavity.


1986 ◽  
Vol 16 (12) ◽  
pp. 1503-1507 ◽  
Author(s):  
Aime Vazquez ◽  
Jean-Philipe Gerard ◽  
Daniel Olive ◽  
Marie-Thérèse Auffredou ◽  
Bernard Dugas ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 68 ◽  
Author(s):  
Silvia Tores de la Cruz ◽  
Amaia Iriondo-DeHond ◽  
Teresa Herrera ◽  
Yolanda Lopez-Tofiño ◽  
Carlos Galvez-Robleño ◽  
...  

Melanoidins present in coffee silverskin, the only by-product of the roasting process, are formed via the Maillard reaction. The exact structure, biological properties, and mechanism of action of coffee silverskin melanoidins, remain unknown. This research work aimed to contribute to this novel knowledge. To achieve this goal, melanoidins were obtained from an aqueous extract of Arabica coffee silverskin (WO2013004873A1) and was isolated through ultrafiltration (>10 kDa). The isolation protocol was optimized and the chemical composition of the high molecular weight fraction (>10 kDa) was evaluated, by analyzing the content of protein, caffeine, chlorogenic acid, and the total dietary fiber. In addition, the structural analysis was performed by infrared spectroscopy. Antioxidant properties were studied in vitro and the fiber effect was studied in vivo, in healthy male Wistar rats. Melanoidins were administered to animals in the drinking water at a dose of 1 g/kg. At the fourth week of treatment, gastrointestinal motility was evaluated through non-invasive radiographic means. In conclusion, the isolation process was effective in obtaining a high molecular weight fraction, composed mainly of dietary fiber, including melanoidins, with in vitro antioxidant capacity and in vivo dietary fiber effects.


2001 ◽  
Vol 127 (3) ◽  
pp. 1243-1255 ◽  
Author(s):  
Yong-Woo Kim ◽  
Dae-Sup Park ◽  
Seung-Cheol Park ◽  
Sung Hee Kim ◽  
Gang-Won Cheong ◽  
...  

1998 ◽  
Vol 95 (16) ◽  
pp. 9319-9324 ◽  
Author(s):  
Frank S. Lee ◽  
Robert T. Peters ◽  
Luan C. Dang ◽  
Tom Maniatis

A critical step in the signal-induced activation of the transcription factor NF-κB is the site-specific phosphorylation of its inhibitor, IκB, that targets the latter for degradation by the ubiquitin–proteasome pathway. We have previously shown that mitogen-activated protein kinase/ERK kinase kinase 1 (MEKK1) can induce both this site-specific phosphorylation of IκBα at Ser-32 and Ser-36 in vivo and the activity of a high molecular weight IκB kinase complex in vitro. Subsequently, others have identified two proteins, IκB kinase α (IKK-α) and IκB kinase β (IKK-β), that are present in a tumor necrosis factor α-inducible, high molecular weight IκB kinase complex. These kinases are believed to directly phosphorylate IκB based on the examination of the kinase activities of IKK immunoprecipitates, but more rigorous proof of this has yet to be demonstrated. We show herein that recombinant IKK-α and IKK-β can, in fact, directly phosphorylate IκBα at Ser-32 and Ser-36, as well as homologous residues in IκBβ in vitro, and thus are bona fide IκB kinases. We also show that MEKK1 can induce the activation of both IKK-α and IKK-β in vivo. Finally, we show that IKK-α is present in the MEKK1-inducible, high molecular weight IκB kinase complex and treatment of this complex with MEKK1 induces phosphorylation of IKK-α in vitro. We conclude that IKK-α and IKK-β can mediate the NF-κB-inducing activity of MEKK1.


1974 ◽  
Vol 62 (2) ◽  
pp. 355-361 ◽  
Author(s):  
JENNIFER M. DEHNEL ◽  
P. D. McCONAGHEY ◽  
M. J. O. FRANCIS

SUMMARY Plasma somatomedin is the intermediary through which growth hormone (GH) exerts its effects on the growing skeleton. Somatomedin activity may be produced in vitro by perfusion of the liver and kidneys of rats with Waymouth's medium containing GH. The relationship between the activity of plasma somatomedin and somatomedin of hepatic and renal origin has yet to be clarified. Somatomedin from plasma can be separated into active fractions of both high and low molecular weight. Similarly, ultrafiltration of medium containing somatomedin of hepatic origin indicates the existence of two active fractions, one of high molecular weight (greater than 50000) and one of low molecular weight (less than 1000). The latter can be attributed to the release of amino acids, such as serine and glutamine, by the perfused tissue. The high molecular weight fraction is believed to represent GH-dependent somatomedin. Fractions that inhibit production of cartilage matrix are present in liver perfusates as well as in plasma. These results provide further evidence that the liver is a source of GH-dependent somatomedin in vivo. Furthermore, cartilage growth may be controlled not only by the GH-stimulated release of somatomedin by the liver, but also by its release of acid-labile somatomedin inhibitors.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 396-396
Author(s):  
Liang Hu ◽  
Sherif Ibrahim ◽  
Cynthia Liu ◽  
Jeffrey Skaar ◽  
Michelle Pagano ◽  
...  

Abstract Although it has been generally accepted that hypercoagulability contributes to enhancing tumor growth via generation of thrombin (Cancer Cell10:355, 2006), it has not been rigorously proven, nor has the mechanism been established at the cell cycle level. Previous studies have employed thrombin-treated tumor cell lines in vitro and in vivo. In vitro studies were performed in the presence of serum which contains a panoply of growth factors. In vivo studies have used huge non-pathologic concentrations of tumor cells injected into the flank, organ or blood of a mouse. In these situations, tumor growth could be a result of thrombin-induced angiogenesis. We therefore employed a transgenic mouse prostate cancer model (TRAMP) programmed to develop prostate CA over a period of 140–175 days. We treated these animals with thrombin to induce hypercoagulability or hirudin to inhibit endogenous thrombin production, to determine whether thrombin regulates this process independent of angiogenesis. Repetitive thrombin injection enhanced prostate tumor volume 6–8 fold (p<0.04). Repetitive hirudin decreased tumor volume 13–24 fold (p<0.04) via its effect on generated endogenous thrombin, n=6. Thrombin enhanced the production of several vascular growth factors and receptors 2.5 – 3 fold in the liver (VEGF, KDR, ANG-2, Tie2, GRO-1, CD31) and enhanced angiogenesis in the liver, n=3–4. Thrombin had no effect on tumor angiogenesis. Thus, the thrombin-induced spontaneous tumor growth was independent of angiogenesis. We next turned our attention to cell cycle regulators in serum-starved (72 hr) Go-synchronized LNcap prostate CA cells, employing Brdu and Propidium iodide staining. Addition of thrombin (0.5 u/ml) or its PAR-1 receptor agonist, TFLLRN (100 uM) had the same effect as androgen containing serum, inducing cells to leave Go, enter G1 and progress to S-phase. At 8 hrs the number of S-phase cells increased dramatically for both the serum (29 fold) as well as thrombin-treated cells (48 fold), n=3. Similar observations were noted in a Glioblastoma cell line, T98G. We further analyzed the effect of thrombin by performing immunoblots on cell cycle components mediated during cell growth and proliferation. In synchronized Go cells, levels of p27Kip1, a cyclin-dependent kinase inhibitor are high, while levels of cyclins D1 and A, the activation subunits for cyclin-dependent kinases are low. Both thrombin or serum addition led to down-regulation of p27Kip1 with concomitant induction of Skp2, the E3 ubiquitin ligase for p27Kip1. Cyclins D1 and A are induced by similar kinetics, indicating entry into S-phase by 8 hrs. Since p27Kip1 appears to be a rate-limiting down-regulator of the cell cycle (absent with high tumor grade and predicts poor prognosis), we confirmed its role by testing the effect of thrombin or TFLLRN by transfecting p27Kip1 in LNcap cells. This transfection completely prevented the cell cycle stimulation induced by these agonists. A similar approach was used with Skp2 knock down (KD), a negative down-regulator of p27Kip1. KD of Skp2 (over expressed in numerous cancers) completely prevented cell cycle progression induced by thrombin/TFLLRN. MiRNA 222 (upregulated in many cancers) is another down-regulator of p27Kip1. Further analysis following thrombin treatment revealed a robust upregulation at 4 and 8 hrs, providing further proof for the role of thrombin in down-regulating p27Kip1 and stimulating tumor cell entrance into S-phase. Thus, 1) Thrombin enhances spontaneous prostate cell growth in vivo in the absence of enhanced angiogenesis; 2) Thrombin activates the tumor cell cycle by stimulating the down-regulation of p27Kip1 through the upregulation of Skp2 and MiRNA 222.


Sign in / Sign up

Export Citation Format

Share Document