scholarly journals High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn- IgG complexes

Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 184-193 ◽  
Author(s):  
HU Lutz ◽  
P Stammler ◽  
E Jelezarova ◽  
M Nater ◽  
PJ Spath

Intravenously applied human IgG has beneficial effects in treating inflammatory diseases, presumably because it has a complement attenuating role. This role of IgG was studied in vitro by following C3 activation and inactivation in sera that were supplemented with exogenous human IgG and incubated with immune aggregates. IgG added at 2 to 10 mg/mL stimulated the physiologic inactivation of C3b-containing complexes twofold to threefold in 20% sera. This, in turn, lowered the overall C3 activation by 28%, as new C3 convertases primarily assembled on C3b-containing complexes. Exogenous IgG (5 mg/mL) also stimulated inactivation of purified C3b2-IgG complexes, whereby their half-life dropped from 3–4 to 1.5 minutes in 20% serum. IgG appeared to act like a modulator of factor H and I because it did not stimulate inactivation of C3b-containing complexes in factor I-deficient serum. Thus, the known partial protection of C3bn-IgG complexes from inactivation by factor H and I was downregulated by high concentrations of IgG. The ability of high doses of IgG to stimulate complement inactivation is a novel regulatory role of IgG. This may be one of the molecular principles for its therapeutic efficacy in treating complement-mediated inflammations.

Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 184-193 ◽  
Author(s):  
HU Lutz ◽  
P Stammler ◽  
E Jelezarova ◽  
M Nater ◽  
PJ Spath

Abstract Intravenously applied human IgG has beneficial effects in treating inflammatory diseases, presumably because it has a complement attenuating role. This role of IgG was studied in vitro by following C3 activation and inactivation in sera that were supplemented with exogenous human IgG and incubated with immune aggregates. IgG added at 2 to 10 mg/mL stimulated the physiologic inactivation of C3b-containing complexes twofold to threefold in 20% sera. This, in turn, lowered the overall C3 activation by 28%, as new C3 convertases primarily assembled on C3b-containing complexes. Exogenous IgG (5 mg/mL) also stimulated inactivation of purified C3b2-IgG complexes, whereby their half-life dropped from 3–4 to 1.5 minutes in 20% serum. IgG appeared to act like a modulator of factor H and I because it did not stimulate inactivation of C3b-containing complexes in factor I-deficient serum. Thus, the known partial protection of C3bn-IgG complexes from inactivation by factor H and I was downregulated by high concentrations of IgG. The ability of high doses of IgG to stimulate complement inactivation is a novel regulatory role of IgG. This may be one of the molecular principles for its therapeutic efficacy in treating complement-mediated inflammations.


2011 ◽  
Vol 55 (8) ◽  
pp. 3803-3811 ◽  
Author(s):  
Fadia Zaknoon ◽  
Sharon Wein ◽  
Miriam Krugliak ◽  
Ohad Meir ◽  
Shahar Rotem ◽  
...  

ABSTRACTOur previous analysis of antiplasmodial properties exhibited by dodecanoyl-based oligo-acyl-lysyls (OAKs) has outlined basic attributes implicated in potent inhibition of parasite growth and underlined the critical role of excess hydrophobicity in hemotoxicity. To dissociate hemolysis from antiplasmodial effect, we screened >50 OAKs forin vitrogrowth inhibition ofPlasmodium falciparumstrains, thus revealing the minimal requirements for antiplasmodial potency in terms of sequence and composition, as confirmed by efficacy studiesin vivo. The most active sequence, dodecanoyllysyl-bis(aminooctanoyllysyl)-amide (C12K-2α8), inhibited parasite growth at submicromolar concentrations (50% inhibitory concentration [IC50], 0.3 ± 0.1 μM) and was devoid of hemolytic activity (<0.4% hemolysis at 150 μM). Unlike the case of dodecanoyl-based analogs, which equally affect ring and trophozoite stages of the parasite developmental cycle, the ability of various octanoyl-based OAKs to distinctively affect these stages (rings were 4- to 5-fold more sensitive) suggests a distinct antiplasmodial mechanism, nonmembranolytic to host red blood cells (RBCs). Upon intraperitoneal administration to mice, C12K-2α8demonstrated sustainable high concentrations in blood (e.g., 0.1 mM at 25 mg/kg of body weight). InPlasmodium vinckei-infected mice, C12K-2α8significantly affected parasite growth (50% effective dose [ED50], 22 mg/kg) but also caused mortality in 2/3 mice at high doses (50 mg/kg/day × 4).


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.


2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


1975 ◽  
Vol 66 (3) ◽  
pp. 609-620 ◽  
Author(s):  
C Patzelt ◽  
A Singh ◽  
Y L Marchand ◽  
L Orci ◽  
B Jeanrenaud

Colchicine-binding activity of mouse liver high-speed supernate has been investigated. It has been found to be time and temperature dependent. Two binding activities with different affinities for colchicine seem to be present in this high-speed supernate, of which only the high-affinity binding site (half maximal binding at 5 x 10(-6) M colchicine) can be attributed to microtubular protein by comparison with purified tubulin. Vinblastine interacted with this binding activity by precipitating it when used at high concentrations (2 x 10(-3) M), and by stabilizing it at low concentrations (10(-5) M). Lumicolchicine was found not to compete with colchicine. The colchicine-binding activity was purified from liver and compared with that of microtubular protein from brain. The specific binding activity of the resulting preparation, its electrophoretic behavior, and the electron microscope appearance of the paracrystals obtained upon its precipitation with vinblastine permitted its identification as microtubular protein (tubulin). Electrophoretic analysis of the proteins from liver supernate that were precipitated by vinblastine indicated that this drug was not specific for liver tubulin. Preincubation of liver supernate with 5 mM EGTA resulted in a time-dependent decrease of colchicine-binding activity, which was partly reversed by the addition of Ca++. However, an in vitro formation of microtubules upon lowering the Ca++ concentration could not be detected. Finally, a method was developed enabling that portion of microtubular protein which was present as free tubulin to be measured and to be compared with the total amount of this protein in the tissue. This procedure permitted demonstration of the fact that, under normal conditions, only about 40% of the tubulin of the liver was assemled as microtubules. It is suggested that, in the liver, rapid polymerization and depolymerization of microtubules occur and may be an important facet of the functional role of the microtubular system.


2013 ◽  
Vol 305 (11) ◽  
pp. L844-L855 ◽  
Author(s):  
Ming-Yuan Jian ◽  
Mikhail F. Alexeyev ◽  
Paul E. Wolkowicz ◽  
Jaroslaw W. Zmijewski ◽  
Judy R. Creighton

Acute lung injury secondary to sepsis is a leading cause of mortality in sepsis-related death. Present therapies are not effective in reversing endothelial cell dysfunction, which plays a key role in increased vascular permeability and compromised lung function. AMP-activated protein kinase (AMPK) is a molecular sensor important for detection and mediation of cellular adaptations to vascular disruptive stimuli. In this study, we sought to determine the role of AMPK in resolving increased endothelial permeability in the sepsis-injured lung. AMPK function was determined in vivo using a rat model of endotoxin-induced lung injury, ex vivo using the isolated lung, and in vitro using cultured rat pulmonary microvascular endothelial cells (PMVECs). AMPK stimulation using N1-(α-d-ribofuranosyl)-5-aminoimidizole-4-carboxamide or metformin decreased the LPS-induced increase in permeability, as determined by filtration coefficient ( Kf) measurements, and resolved edema as indicated by decreased wet-to-dry ratios. The role of AMPK in the endothelial response to LPS was determined by shRNA designed to decrease expression of the AMPK-α1 isoform in capillary endothelial cells. Permeability, wounding, and barrier resistance assays using PMVECs identified AMPK-α1 as the molecule responsible for the beneficial effects of AMPK in the lung. Our findings provide novel evidence for AMPK-α1 as a vascular repair mechanism important in the pulmonary response to sepsis and identify a role for metformin treatment in the management of capillary injury.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1709 ◽  
Author(s):  
Maria Teresa Viggiani ◽  
Lorenzo Polimeno ◽  
Alfredo Di Leo ◽  
Michele Barone

Phytoestrogens are natural substances that have been extensively studied for their beneficial effect on human health. Herein, we analyzed the data of the literature on the role of phytoestrogens in the prevention of colorectal neoproliferative lesions (CNL). Both in vitro and in vivo studies suggest that the beneficial effects of phytoestrogens on CNL mainly depend on their ability to bind estrogen receptor beta (ERβ) in the intestinal mucosa and counter ER-alpha (ERα) activity. Epidemiological data demonstrate a correlation between the low prevalence of CNL in Eastern populations and the consumption of soy products (phytoestrogen-enriched diet). However, both observational and interventional studies have produced inconclusive results. In our opinion, these discrepancies depend on an inadequate evaluation of phytoestrogen intake (dietary questionnaires were not aimed at establishing phytoestrogen intake) and absorption (depending mainly on the intestinal microbiota of the analyzed subjects). For this reason, in the present review, we performed an overview of phytoestrogen dietary intake and metabolism to offer the reader the opportunity for a better interpretation of the literature. Future prospective trials focusing on the protective effect of phytoestrogens against CNL should take into account both their dietary intake and absorption, considering the effective role of the intestinal microbiota.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Mingfang Ye ◽  
Linlin Zhang ◽  
Yuanming Yan ◽  
Huizhong Lin

Abstract Doxorubicin (DOX) is a wide-spectrum antitumor agent, but its clinical application is largely limited by its cardiotoxicity. Therefore, identification of effective agents against DOX-induced cardiotoxicity is of critical importance. The present study aimed to determine the beneficial role of punicalagin (PUN), a polyphenol isolated from pomegranate, in DOX-induced cardiotoxicity in vitro and explored the underlying mechanisms. H9c2 cardiomyocytes were pretreated with different concentrations (50, 100 and 200 μM) of PUN prior to DOX exposure. The results showed that PUN pretreatment significantly increased cell viability, inhibited lactate dehydrogenase (LDH) release and suppressed cell apoptosis induced by DOX. Additionally, PUN pretreatment attenuated the loss of mitochondrial membrane potential and cytochrome c release. Besides, PUN further enhanced the expression of nuclear Nrf2 and HO-1 in DOX-treated H9c2 cells, and the aforementioned beneficial effects of PUN were partially abolished by small interfering RNA (siRNA)-mediated Nrf2 knockdown. Hence, our findings clearly revealed that PUN might be a promising agent for alleviating the cardiotoxicity of DOX, and Nrf2/HO-1 signaling might serve a critical role during this process.


2020 ◽  
Vol 11 ◽  
Author(s):  
Giulia Lanzolla ◽  
Claudio Marcocci ◽  
Michele Marinò

The balance of the cell redox state is a key point for the maintenance of cellular homeostasis. Increased reactive oxygen species (ROS) generation leads to oxidative damage of tissues, which is involved in the development of several diseases, including autoimmune diseases. Graves’ Orbitopathy (GO) is a disfiguring autoimmune-related condition associated with Graves’ Disease (GD). Patients with active, moderate-to-severe GO, are generally treated with high doses intravenous glucocorticoids (ivGCs) and/or orbital radiotherapy. On the contrary, up to recently, local ointments were the treatment most frequently offered to patients with mild GO, because the risks related to ivGCs does not justify the relatively poor benefits expected in mild GO. However, a medical treatment for these patients is heavily wanted, considering that GO can progress into more severe forms and also patients with mild GO complain with an impairment in their quality of life. Thus, based on the role of oxidative stress in the pathogenesis of GO, a therapy with antioxidant agents has been proposed and a number of studies have been performed, both in vitro and in vivo, which is reviewed here.


Sign in / Sign up

Export Citation Format

Share Document