scholarly journals Activation of naive and memory T cells by interleukin-15

Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 230-235 ◽  
Author(s):  
H Kanegane ◽  
G Tosato

Abstract Interleukin-15 (IL-15), a product of monocytes and other cells, has biological activities similar to those of IL-2, including growth stimulation of activated T cells, induction of cytolytic effector cells, and B-cell costimulation for proliferation and lg production. We report that IL-15 at optimal concentrations rapidly induced memory (CD45RO+) CD4+ and CD8+ T cells and naive (CD45RO-) CD8+ T cells to express the CD69 activation marker followed by proliferation. By contrast, IL-15 failed to induce naive (CD45RO-) CD4+ T cells to express CD69 or to proliferate. Similar findings were obtained with IL- 2. Unlike the other T-cell subsets, CD4+ T cells with a naive phenotype expressed little or no IL-2R beta chain, a shared component of the IL-2 and IL-15 receptors required for receptor function. A monoclonal antibody to the IL-2R beta chain, Mik beta 1, reduced CD69 expression and proliferation in CD4+ memory, CD8+ memory, and CD8+ naive T cells activated by IL-15. These results confirm the biological similarities of IL-2 and IL-15. They further document that the pool of naive CD4+ cells, unlike the pool of memory CD4+, memory CD8+, and naive CD8+ cells, is not regulated directly by the T-cell growth factors IL-2 or IL-15.

Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 230-235 ◽  
Author(s):  
H Kanegane ◽  
G Tosato

Interleukin-15 (IL-15), a product of monocytes and other cells, has biological activities similar to those of IL-2, including growth stimulation of activated T cells, induction of cytolytic effector cells, and B-cell costimulation for proliferation and lg production. We report that IL-15 at optimal concentrations rapidly induced memory (CD45RO+) CD4+ and CD8+ T cells and naive (CD45RO-) CD8+ T cells to express the CD69 activation marker followed by proliferation. By contrast, IL-15 failed to induce naive (CD45RO-) CD4+ T cells to express CD69 or to proliferate. Similar findings were obtained with IL- 2. Unlike the other T-cell subsets, CD4+ T cells with a naive phenotype expressed little or no IL-2R beta chain, a shared component of the IL-2 and IL-15 receptors required for receptor function. A monoclonal antibody to the IL-2R beta chain, Mik beta 1, reduced CD69 expression and proliferation in CD4+ memory, CD8+ memory, and CD8+ naive T cells activated by IL-15. These results confirm the biological similarities of IL-2 and IL-15. They further document that the pool of naive CD4+ cells, unlike the pool of memory CD4+, memory CD8+, and naive CD8+ cells, is not regulated directly by the T-cell growth factors IL-2 or IL-15.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 591-591 ◽  
Author(s):  
Patricia Taylor ◽  
Angela Panoskaltsis-Mortari ◽  
Gordon Freeman ◽  
Arlene Sharpe ◽  
Randolph Noelle ◽  
...  

Abstract ICOS, a CD28/CTLA-4 family member, is expressed on activated T cells. ICOS Ligand, a B7 family member, is constitutively expressed on B cells, monocytes and some T cells. Through the use of blocking anti-ICOS mAb and ICOS deficient (−/−) mice, we found that ICOS:ICOSL interactions play an important role in GVHD and BM graft rejection. Anti-ICOS mAb (given d-1 to d28 post BMT) significantly delayed or reduced mortality at 2 different T cell doses in a full MHC-disparate GVHD model. ICOS−/− T cells led to delayed or reduced mortality at 3 different cell doses compared to wild-type T cells. ICOS−/− CD4+ or CD8+ T cells infused into class II- or class I-disparate recipients, respectively, revealed that ICOS:ICOSL interactions regulate both CD4+ and CD8+ T cell alloresponses. Anti-ICOS inhibited GVHD in a CD28-independent fashion. Anti-ICOS inhibited GVHD mediated by either stat 4−/− or stat 6−/− T cells indicating that the ICOS pathway regulates both Th2 and Th1-mediated GVHD. In contrast to blockade of the B7:CD28/CTLA-4, CD40L:CD40 or the OX40:OX40L pathway, anti-ICOS mAb inhibited GVHD even when delayed until d5 post BMT, a time when substantial T cell expansion has occurred. A TCR transgenic model of GVHD was used to further study effects of ICOS:ICOSL blockade. All CB6 F1 recipients of anti-host alloreactive 2C CD8+ and TEa CD4+ T cells succumbed to GVHD mortality by d18 after transfer of cells. In contrast, 88% of anti-ICOS-treated mice survived long-term. Evaluation of spleens early after transplant revealed that anti-ICOS mAb reduced the number of TEa CD4+ cells by 44% and 2C CD8+ cells by 83%. Green fluorescent protein (GFP) 2C CD8+ and GFP TEa CD4+ T cells were infused into irradiated CB6 F1 mice and irrelevant or anti-ICOS mAb was administered. Mice were imaged on d4, 7 and 12 after T cell transfer. By d7, pronounced infiltration of GFP+ cells was noted in the peripheral and mesenteric LN, spleen, Peyer’s patches (PP), skin, gingiva, liver, kidney, lung, ileum, and colon of GVHD control mice. In contrast, there were fewer GFP+ cells in the spleen, ileum, colon, kidney, lung, skin and gingiva of anti-ICOS-treated mice, although there was no decrease in GFP+ cells in LNs or PP. To study the role of host ICOS expression in BM graft rejection, wild-type or ICOS−/− mice were sublethally irradiated and given allogeneic BM and evaluated for donor chimerism at 6 weeks post BMT. Five of 10 wild type mice engrafted (ave − 26% donor) in contrast to all 10 of ICOS−/− mice (ave − 71% donor). Collectively, these data indicate that ICOS:ICOSL interactions play an important role in GVHD, whether mediated by CD4+ Th1 or Th2 T cells or CD8+ T cells. Importantly, blockade of ICOS:ICOSL after initiation of alloresponses inhibited GVHD, in contrast to blockade of other costimulatory pathways, suggesting that the ICOS pathway may be a novel therapeutic target in primed transplantation situations. Anti-ICOS interfered with expansion of donor T cells in the spleen early after transplant and reduced the number of effector cells in several GVHD target tissues. These data suggest this pathway may be indicated for therapeutic targeting for the inhibition of GVHD and BM graft rejection.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1071-1071
Author(s):  
Melody M. Smith ◽  
Cynthia R. Giver ◽  
Edmund K. Waller ◽  
Christopher R. Flowers

Abstract Ex vivo modification of donor lymphocytes with purine analogs (mDL) may help to minimize graft versus host disease (GvHD) while providing beneficial graft versus leukemia (GvL) effects. In a murine model system, we have shown that allogeneic donor splenocytes, treated with fludarabine ex vivo have significantly reduced GvHD activity when transferred to irradiated recipient mice, and retain anti-viral and GvL activities (Giver, 2003). This effect appears to be mediated by relative depletion of donor CD4 CD44low, “naive” T-cells. As a first step toward developing mDL for use in patients, we sought to evaluate the effects of ex vivo fludarabine exposure on human T-cell subsets, and to determine the minimum dose of fludarabine required to achieve this effect. Methods: Peripheral blood mononuclear cell samples from 6 healthy volunteers were evaluated at 0, 24, 48, and 72 hour time points after ex vivo incubation in varying dosages of fludarabine: 2, 5, and 10(n=3) mcg/ml. Fludarabine incubated samples were compared to samples that received no fludarabine (untreated). The total viable cell number was determined and the fractions and absolute numbers of viable CD4 and CD8 naïve and memory T-cells were determined using flow cytometry after incubation with 7-AAD (dead cell stain), CD4, CD8, CD45RA, CD62L, and CCR7 antibodies, and measuring the total viable cells/ml. Results: The numbers of viable CD4 and CD8 T-cells remained relatively stable in control cultures. Without fludarabine, the average viability at 72 hr of naive and memory T-cells were 92% and 77% for CD4 and 86% and 63% for CD 8 (Fig. 1A). Naive CD4 T-cells were more sensitive to fludarabine-induced death than memory CD4 cells. At 72 hr, the average viability of fludarabine-treated naive CD4 T-cells was 33% at 2 mcg/ml (8.2X the reduction observed in untreated cells) and 30% at 5 mcg/ml, while memory CD4 T-cells averaged 47% viability at 2 mcg/ml (2.3X the reduction observed in untreated cells) (Fig. 1B) and 38% at 5 mcg/ml. The average viability of naive CD8 T-cells at 72 hr was 27% at 2 mcg/ml and 20% at 5 mcg/ml, while memory CD8 T-cell viability was 22% at 2 mcg/ml and 17% at 5 mcg/ml. Analyses on central memory, effector memory, and Temra T-cells, and B-cell and dendritic cell subsets are ongoing. The 5 and 10 mcg/ml doses also yielded similar results in 3 initial subjects, suggesting that 2 mcg/ml or a lower dose of fludarabine is sufficient to achieve relative depletion of the naive T-cell subset. Conclusions: Future work will determine the minimal dose of fludarabine to achieve this effect, test the feasibility of using ex vivo nucleoside analog incubation to reduce alloreactivity in samples from patient/donor pairs, and determine the maximum tolerated dose of mDL in a phase 1 clinical trial with patients at high risk for relapse and infectious complications following allogeneic transplantation. Figure Figure


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2648-2648
Author(s):  
Fuliang Chu ◽  
Wencai Ma ◽  
Tomohide Yamazaki ◽  
Myriam Foglietta ◽  
Durga Nattama ◽  
...  

Abstract Abstract 2648 Background: Programmed death (PD)-1, a coinhibitory receptor expressed by effector T cells (Teffs) is highly expressed on intratumoral T cells (mean 61%, range 34–86% for CD4+ T cells and mean 44%, range 31–69% for CD8+ T cells) in follicular lymphoma (FL), a finding associated with impaired ability to recognize autologous tumor (Nattamai et al, ASH 2007). Hence, PD-1 expression would be expected to confer an unfavorable prognosis in FL. However, correlation of PD-1 with clinical outcome in FL has been inconsistent with two studies showing favorable (Carreras et al, J Clin Oncol 2009; Wahlin et al, Clin Cancer Res 2010) and one study showing unfavorable (Richendollar et al, Hum Pathol 2011) outcome. While differences in method of analysis and type of treatment may explain the disparate results, a more complex model may be necessary to understand the prognostic impact of PD-1 in FL as PD-1 is expressed not only on antitumor Teffs but also on protumor follicular helper T cells (Tfh) and regulatory T cells (Tregs). Methods: To determine the nature of PD-1+ T cells in FL we performed comprehensive genomic and immunologic studies. By flow cytometry, we observed that the intratumoral CD4+ T cells in FL may be categorized into 3 subsets based on PD-1 expression - PD-1 high (PD-1hi), intermediate (PD-1int), and low (PD-1lo). The intratumoral CD8+ T cells consisted of PD-1int and PD-1lo subsets. The 3 CD4+ T cell subsets were FACSorted from FL tumors (n=3) and whole genome gene expression profiling (GEP) was performed. T cell subsets sorted similarly from tonsils served as controls for reactive follicular hyperplasia (FH) (n=3). Differentially expressed genes in GEP studies were confirmed at the mRNA level by real-time PCR (n=5) and at the protein level by flow cytometry when antibodies were available (n=5–10). Results: Our results suggested that CD4+PD-1hi T cells are Tfh cells (CXCR5hiBcl6hi ICOShiCD40LhiSAPhiPRDM1loIL-4hiIL-21hi); the CD4+PD-1int T cells consisted of a mixture of activated Teffs (CD45RO+CD45RA−) including Th1 (Tbet+IFNg+), Th2 (IL-10+), and Th17 cells (RORc+IL-17+), and Tregs (Foxp3+CD25hiCD127lo); and the CD4+PD-1lo T cells consisted of a mixture of activated Teffs (CD45RO+CD45RA− but IFNg−IL-4−IL-10−IL-17−), Tregs, and naïve T cells (CD45RO−CD45RA+CCR7+). Although these subsets were present in both FL and FH, there were important differences. IL-4 expression was significantly higher in Tfh in FL vs. FH and may play a role in the pathogenesis of FL. IL-17 expression was low and expression of coinhibitory molecules BTLA and CD200 was high in CD4+PD-1int T cells in FL vs. FH. BTLA and CD200 were also increased in CD8+PD-1int T cells in FL vs. FH. However, other coinhibitory molecules (LAG-3, Tim-3, CD160, CTLA-4, CD244, KLRG1) were not significantly different between FL and FH. CD4+PD-1int T cells also had higher expression of BATF, a transcription factor associated with T cell exhaustion in FL vs. FH. Together, these results suggest that the CD4+PD-1int T cells in FL may be in a state of T cell exhaustion whereas the CD4+PD-1int T cells in FH may represent recently activated Teffs. Consistent with this, blocking PD-1 with anti-PD-1 blocking antibody significantly enhanced proliferation and the production of Th1 (IFNg, TNFa) but not Th2 (IL-4, IL-5, IL-10, IL-13) cytokines by intratumoral CD4+ and CD8+ T cells in response to stimulation with autologous FL tumor cells (n=3). As expected, Tregs were increased in number in FL vs. FH and were present in the PD-1int and PD-1lo T cell subsets. We found 74% (range 40–97%) of FL Tregs expressed PD-1. Among the CD4+PD-1lo and CD8+PD-1lo T cells, there were more activated Teffs and fewer naïve T cells in FL vs. FH. Conclusions: Our results suggest that the PD-1+ T cells in FL are comprised of a mixture of antitumor Teffs and protumor Tfh and Tregs. The prognostic impact of PD-1+ T cells in FL may dependent on the relative frequency of these subsets as ligation of PD-1 may produce favorable (inhibition of protumor Tfh and Tregs) or unfavorable (inhibition of antitumor Teffs) outcomes by inhibiting or promoting tumor growth, respectively. Conversely, our results imply that agents that block PD-1/PD-ligand pathway may have the opposite effect on these T cell subsets and enumeration of the intratumoral PD-1+ T cell subsets may serve as biomarker to predict response to these agents in FL and possibly other B-cell malignancies. Disclosures: Dong: GSK: Consultancy; Genentech: Honoraria; Tempero: Consultancy; Ono: Consultancy; AnaptysBio: Consultancy. Neelapu:Cure Tech Ltd: Research Funding.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Masaki Tateyama ◽  
Naoki Oyaizu ◽  
Thomas W. McCloskey ◽  
Soe Than ◽  
Savita Pahwa

CD4 molecules serve as coreceptors for the T-cell receptor (TCR)/CD3 complex that are engaged coordinately with TCR and facilitate antigen-specific T-cell activation leading to interleukin 2 (IL-2) production and proliferation. However, cross-ligation of CD4 molecules prior to TCR stimulation has been shown to prime CD4 T cells to undergo apoptosis. Although in vivo and in vitro experiments have implicated the involvement of Fas/FasL interaction in this CD4 cross-linking (CD4XL)-induced apoptosis, detailed mechanisms to account for cell death induction have not been elucidated. In the present study, we demonstrate that CD4XL in purified T cells not only led to Fas up-regulation but also primed CD4 T cells to express FasL upon CD3 stimulation and rendered the T cells susceptible to Fas-mediated apoptosis. Notably, in addition to CD4+ T cells, CD4XL-induced sensitization for apoptosis was observed in CD8+ T cells as well and was associated with Bcl-x down-modulation. Both CD4 and CD8 T-cell subsets underwent apoptosis following cell–cell contact with FasL+ CD4 T cells. CD28 costimulation abrogated CD4XL/CD3-induced apoptosis with restoration of IL-2 production and prevented Bcl-x down-modulation. As CD4 molecules are the primary receptors for human immunodeficiency virus 1 (HIV-1), we conclude that HIV-1 envelope mediated CD4XL can lead to the generation of FasL-expressing CD4+ T cells that can lead to apoptosis of CD4 as well as CD8 T cells. These findings implicate a novel mechanism for CD8 T-cell depletion in HIV disease.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3280-3280
Author(s):  
Kazuyuki Murase ◽  
Yutaka Kawano ◽  
Jeremy Ryan ◽  
Ken-ichi Matsuoka ◽  
Gregory Bascug ◽  
...  

Abstract Abstract 3280 CD4+CD25+Foxp3+ regulatory T cells (Treg) play an important role in the maintenance of self-tolerance and immune homeostasis and Treg deficiency contributes to the development of autoimmune diseases. CD4Treg, conventional CD4 T cells (Tcon) and CD8 T cells are derived from lymphocyte progenitor cells that differentiate into distinct functional subsets in the thymus before export to the peripheral circulation. As T cells differentiate and expand in the periphery, each T cell subset is differentially regulated and subjected to distinct homeostatic signals. For example, interleukin-2 (IL-2) is a critical regulator of Treg development, expansion and survival and lack of IL-2 results in selective Treg deficiency. In regulating Treg homeostasis, IL-2 has multiple and distinct effects on Treg differentiation, proliferation and susceptibility to apoptosis. To determine the mechanism whereby IL-2 affects susceptibility of Treg to apoptosis, we used a new flow cytometry-based assay (BH3 profiling) to measure the mitochondrial membrane depolarization in response to a panel of pro-apoptotic BH3 peptides (BIM, BID, BAD, NOXA, PUMA, BMF, HRK). This assay allowed us to compare “priming” which we define as susceptibility to BH3 peptide-induced mitochondrial membrane depolarization in different T cell subsets, including CD4 Treg, CD4 Tcon and CD8 T cells. We also examined cell surface expression of CD95 death receptor (Fas) and cytoplasmic expression of Bcl-2 and Ki67 as additional measures of susceptibility to apoptosis and proliferation in each subset. In resting blood obtained from healthy donors (n=10), CD4 Treg were more “primed” than either CD4 Tcon or CD8 T cells when exposed to several BH3 peptides (PUMA, BMF and the combination of BAD+NOXA). CD4 Treg were also found to have decreased expression of Bcl-2 and increased expression of CD95 and Ki67 compared to CD4 Tcon or CD8 T cells. Thus, Treg in healthy individuals have higher proliferative activity and are more susceptible to apoptosis than other major T cell subsets through both mitochondrial and death receptor pathways. To establish the functional effects of TCR stimulation and IL-2, CD4 Treg, CD4 Tcon and CD8 T cells were purified by cell sorting and cultured for 5–6 days with or without TCR stimulation (1μg/ml anti-CD3 + 1μg/ml anti-CD28) and IL-2 (100 IU/ml). Results were compared to cells cultured in media alone. Results are summarized in the table below. CD4 Tcon and CD8 T cells responded in a similar fashion to either TCR stimulation alone or TCR plus IL-2. This response included increased BH3 priming, reduced expression of Bcl-2, increased expression of CD95 and increased proliferation (Ki-67). IL-2 alone had no effect on CD4 Tcon or CD8 T cells. In contrast, TCR stimulation alone had no effect on CD4 Treg but IL-2 alone reduced BH3 priming and increased expression of Bcl-2. Combined TCR stimulation plus IL-2 in Treg increased BH3 priming, reduced expression of Bcl-2, increased expression of CD95 and increased proliferation. Thus, TCR stimulation reversed the anti-apoptotic effects of IL-2 alone and markedly increased susceptibility of Treg to apoptosis. When compared with CD4 Tcon and CD8 T cells, these studies demonstrate distinct effects of TCR stimulation and IL-2 on both mitochondrial and death receptor pathways of apoptosis in CD4 Treg and define mechanisms whereby TCR stimulation and IL-2 interact to regulate Treg homeostasis. Table 1. Effects of in vitro TCR stimulation and IL-2 on apoptotic pathways of T cell subsets TCR Stimulation IL-2 TCR + IL2 BH3 priming Bcl-2 CD95 Ki67 BH3 priming Bcl-2 CD95 Ki67 BH3 priming Bcl-2 CD95 Ki67 CD4 Treg – – – – ↓ ↑ – – ↑ ↓ ↑ ↑ CD4 Tcon ↑ ↓ ↑ ↑ – – – – ↑ ↓ ↑ ↑ CD8 ↑ ↓ ↑ ↑ – – – – ↑ ↓ ↑ ↑ Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S182-S183
Author(s):  
Samuel Bailin ◽  
Kathleen McGinnis ◽  
Wyatt J McDonnell ◽  
Kaku So-Armah ◽  
Melissa Wellons ◽  
...  

Abstract Background Depletion of naïve CD4+ T cells and elevated adaptive immune activation are hallmarks of HIV infection. Higher proportions of memory CD4+ T cells are associated with prevalent diabetes in the general population, but few studies of persons with HIV (PWH) exist. Methods We analyzed data from 1532 PWH and 836 uninfected veterans in the longitudinal Veterans Aging Cohort Study (VACS), which archived peripheral mononuclear cells from these veterans between 2005 and 2007. We used flow cytometry to phenotype CD4+ and CD8+ T cells, including naïve, activated CD38+, senescent CD57+, total memory, and memory subsets. Prevalent diabetes (at blood collection) was identified in the VA electronic medical record using random glucose, hemoglobin A1c, ICD-9 codes, and medication. Cases were validated by two-physician chart review. We used multivariate logistic regression models adjusted for age, gender, body mass index, race/ethnicity, unhealthy alcohol use, hepatitis C, CMV status, and viral suppression stratified by HIV status to identify T-cell subsets associated with diabetes in PWH and uninfected. Results The cohort was 95% male, 68% African-American, and 22% diabetic. Higher CD4+CD45RO+ memory T cells were associated with prevalent diabetes in the uninfected and in PWH (P = 0.03 and P = 0.07, respectively; Figure A). Among subsets, diabetes was associated with higher transitional memory CD4+ T cells in the uninfected (P = 0.01), but higher central memory cells (P = 0.02) and lower effector memory cells (P = 0.04) in PWH. T effector memory RA+ cells were not associated with diabetes. Lower senescent CD4+CD57+ T cells were associated with diabetes in both PWH and uninfected (P = 0.03 and P = 0.04, respectively; Figure B), but results for naïve CD8+ T cells diverged: diabetes was associated with higher naïve CD8+cells in PWH but lower in uninfected (P = 0.01 and P < 0.01, respectively; Figure C). We assessed interaction by HIV status in a pooled model, which was only significant for the naïve CD8+ T cells (P = 0.01). Conclusion The adaptive immune profile associated with prevalent diabetes was similar by HIV status and characterized by a shift in CD4+ T cells from senescent to memory phenotypes, suggesting that chronic immune activation contributes to the higher risk of diabetes in PWH. Disclosures All authors: No reported disclosures.


Blood ◽  
2009 ◽  
Vol 113 (13) ◽  
pp. 2955-2964 ◽  
Author(s):  
Cristina Cerboni ◽  
Michele Ardolino ◽  
Angela Santoni ◽  
Alessandra Zingoni

Abstract NKG2D is an activating receptor expressed on CD8+αβ+ T cells, γδ+ T cells, natural killer (NK) cells, and some CD4+ T cells. For a long time, the interaction of NKG2D with its ligands (NKG2DLs) MICA, MICB, and ULBP1-3 has been considered a mechanism for recognition and elimination of tumor, infected, or otherwise “stressed” cells. However, a new role for NKG2D as an immunoregulatory receptor is emerging. Here, we show that NKG2D is strongly down-modulated on antigen-activated CD8+ T cells but only if CD4+ T cells are present. Down-modulation was caused by soluble factors produced by CD4+ T cells, and in particular soluble NKG2DLs were found in the supernatants of antigen-activated T-cell cultures. MICB was the ligand released at higher levels when CD4+ T cells were present in the cell cultures, suggesting that it could be the major player of NKG2D down-modulation. CD8+ T cells expressing low levels of NKG2D had impaired effector functions, as evaluated by proliferation, cytokine production, and cytotoxicity assays after combined triggering of NKG2D and TCR-CD3 complex. These findings show that activated CD4+ T cells expressing NKG2DLs can efficiently prevent NKG2D-mediated CD8+ T-cell functions, and suggest that the NKG2D/NKG2DL interaction can regulate immune responses.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5240-5240
Author(s):  
Edward Truelove ◽  
Frances Seymour ◽  
Joseph G Taylor ◽  
Mariarita Calaminici ◽  
Andrew James Clear ◽  
...  

Diffuse large B-cell Lymphoma (DLBCL) is the most frequent non-Hodgkin's lymphoma with 3 molecularly distinct subtypes based on cell of origin. Genetic alterations in DLBCL, expression of checkpoint molecules and an immunosuppressive microenvironment (ME) all contribute to escape from host anti-lymphoma immunity. The clinical success of monoclonal antibodies that engage the immune system and CAR-T cellular therapy have further highlighted the importance and therapeutic potential of the immune ME in DLBCL. Here we present data from comprehensive phenotyping of cell suspensions from diagnostic DLBCL and reactive lymph node / tonsil (RLNT) biopsies by cytometry by time of flight (CyTOF), with a focus on the T-cell compartment. Cryopreserved samples from 6 DLBCL (5 LN, 1 spleen) at diagnosis and 5 RLNT (3 LN, 2 tonsil) were stained with a panel of metal-tagged antibodies and analysed by CyTOF2. Samples were acquired in 2 batches with the same RLNT (LN) sample with each to ensure staining consistency. Data were normalised, uploaded to Cytobank, gated to CD45+ CD3+ live single cells and exported for further analysis with Cytofkit in R. CD3+ events were gated further into CD4+ and CD8+ subsets, which demonstrated that CD4+ T cells were the predominant phenotype in all samples. However, there was a marked skewing of the CD4:CD8 ratio, with CD4+ T cells lower as a percentage of CD3+ T cells in the DLBCL samples (55.84 v 78.18, p=0.0173*). CD8+ T cells were higher as a percentage in DLBCL (36.22 v 16.75, p=0.03*) with no difference seen in double negative (DN) T cells. CD3+ T cells were then clustered with FlowSOM and visualised according to the tSNE algorithm. A heatmap of median marker expression intensity was generated to facilitate cluster identification. This revealed a number of differences in cluster abundance between the groups, with a significant shift in differentiation away from naïve and towards an effector memory (EM) phenotype in DLBCL. There were fewer cells in the CD27+ CD28+ CCR7+ CD45RA+ CD4+ naïve cluster in the DLBCL samples than the RLNT (p=0.0173*). Although the DLBCL samples showed an overall reduction in CD4+ T cells, the clusters of regulatory T cells (Treg: CD4+ CD25+ FOXP3+ and CD127-/low) consisted of more cells from these cases than the RLNT (p=0.0043**). Within the Treg population, the DLBCL patients had more Th1 polarised (T-bet+) Tregs and more PD-1 expressing Tregs. The Th1 Tregs predominantly secreted the suppressive cytokines IL-2, IL-10 and TGF-β on stimulation and may play a role in inhibiting Th1 responses. Conventional Th1 were not increased in DLBCL resulting in a higher Th1 Treg to Th1 ratio than in RLNT. There was a trend for RLNT samples to contribute more cells to the PD-1 high follicular helper T cell (TFH) cluster and DLBCL to the PD-1+ TIM-3+ DN cluster. The DLBCL ME had relatively more CD8+ T cells and contributed more to the CCR7- CD45RA- CD8+ EM clusters (p=0.0173*) but the CD8+ T cells in the RNLT samples tended to a naïve CCR7+ CD45RA+ PD-1- phenotype (p=0.0519). The CD8+ EM cells enriched in the DLBCL ME expressed the cytotoxic markers granzyme and perforin and responded to stimulation with degranulation (CD107a) and cytokine production (IFNγ, TNFα, TGFβ and IL-10), not suggestive of exhaustion. It is also notable that a cluster of PD-1+ TIM-3+ CD8+ EM with reduced markers of cytotoxicity, low CD107a expression and poor cytokine production after stimulation was predominantly made up of cells from DLBCL suspensions (p=0.002**). CyTOF analysis of the DLBCL ME has demonstrated a shift in the balance of T cell subsets and CD4:CD8 ratio with a relative abundance of immunosuppressive Tregs despite an overall reduction in the CD4+ population and a skew towards differentiation in CD4+ and CD8+ populations. The cytotoxic T cells in DLBCL tended to have an EM phenotype and express immune checkpoint molecules but remained capable of cytokine production. However, the production of IFNγ by these effector T cells may play a role in the development of inhibitory Tregs with a Th1 phenotype, which were enriched in these patients. A cluster of CD8+ EM cells expressing checkpoint molecules and displaying characteristics of exhaustion following stimulation was also seen in these DLBCL patients. These data provide new insights into the immunosuppressive nature of the DLBCL ME and provide a rationale for targeting the ME alongside existing therapeutic approaches, including CAR-T cells to improve outcomes. Disclosures Gribben: Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1047-1055 ◽  
Author(s):  
Michael H. Hsieh ◽  
Robert Korngold

In graft-versus-leukemia (GVL) responses, the cellular subsets and effector mechanisms responsible for cytotoxicity against leukemic cells in vivo remain poorly characterized. A murine model of syngeneic GVL that features CD4+ and CD8+T-cell responses against the MMB3.19 myeloid leukemia cell line has been previously described. MMB3.19 expresses high levels of functional Fas and tumor necrosis factor (TNF) receptors that do not transduce proapoptotic signals. Through the use of perforin- and Fas ligand (FasL)-deficient mice, it was demonstrated that CD4+ T cells mediate anti-MMB3.19 effects in vivo primarily through the use of FasL and secondarily through perforin mechanisms. Conversely, CD8+ T cells induce GVL effects primarily through the use of perforin and minimally through FasL mechanisms. Although the in vivo observations of CD8+ T cells were reflective of their in vitro cytotoxic T lymphocyte (CTL) activity, for CD4+ T cells, in vitro responses were dominated by the perforin pathway. In addition, the diminished capacity of T cells from perforin- and FasL-deficient mice to lyse MMB3.19 target cells appeared directly related to their deficient cytotoxic functions rather than to defects in activation because these cells were fully capable of mounting proliferative responses to the tumor cells. These findings demonstrate that GVL responses of T-cell subsets can involve preferential use of different cytotoxic mechanisms. In particular, these findings identify a role for both FasL-employing CD4+CTLs and the more novel perforin-utilizing CD4+ T-cell subset in responses against a myeloid leukemia.


Sign in / Sign up

Export Citation Format

Share Document