scholarly journals Role of cytokines in leukemic type growth of myelodysplastic CD34+ cells

Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 319-327 ◽  
Author(s):  
K Sawada ◽  
M Ieko ◽  
A Notoya ◽  
T Tarumi ◽  
K Koizumi ◽  
...  

Abstract The clonal growth of progenitor cells from myelodysplastic syndromes (MDS) can be subdivided into four growth patterns: (1) normal, (2) no growth or low plating efficiency, (3) low colony and high cluster number, and (4) normal or high colony number with a large number of clusters. The former two (1 and 2) can be referred to as nonleukemic patterns and latter two (3 and 4) as leukemic. In a search for a role for cytokines in leukemic-type growth of MDS progenitor cells, marrow CD34+ cells were purified up to 94% for 8 normal individuals and 88% for 12 MDS patients, using monoclonal antibodies and immunomagnetic microspheres (MDS CD34+ cells). The purified CD34+ cells were cultured for 14 days with various combinations of cytokines, including recombinant human macrophage colony-stimulating factor (rM-CSF), granulocyte-CSF (rG-CSF), granulocyte-macrophage-CSF (rGM-CSF), interleukin-3 (rIL-3), and stem cell factor (SCF; a ligand for c-kit) in serum-free medium. The clonal growth of MDS CD34+ cells supported by a combination of all of the above cytokines was subdivided into the two patterns of leukemic or nonleukemic, and then the role of individual or combined cytokines in proliferation and differentiation of MDS CD34+ cells was analyzed in each group. Evidence we obtained showed that SCF plays a central role in the leukemic-type growth of MDS CD34+ cells and that G-CSF, GM-CSF; and/or IL-3 synergize with SCF to increase undifferentiated blast cell colonies and clusters over that seen in normal CD34+ cells. SCF is present in either normal or MDS plasma at a level of nanograms per milliliter, and this physiologic concentration of SCF can stimulate progenitor cells. This means that progenitor cells are continuously exposed to stimulation by SCF in vivo and that MDS leukemic cells have a growth advantage over normal blast cells. This depends, at least in part, on cytokines such as G-CSF, GM-CSF, IL-3, and SCF.

Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 319-327
Author(s):  
K Sawada ◽  
M Ieko ◽  
A Notoya ◽  
T Tarumi ◽  
K Koizumi ◽  
...  

The clonal growth of progenitor cells from myelodysplastic syndromes (MDS) can be subdivided into four growth patterns: (1) normal, (2) no growth or low plating efficiency, (3) low colony and high cluster number, and (4) normal or high colony number with a large number of clusters. The former two (1 and 2) can be referred to as nonleukemic patterns and latter two (3 and 4) as leukemic. In a search for a role for cytokines in leukemic-type growth of MDS progenitor cells, marrow CD34+ cells were purified up to 94% for 8 normal individuals and 88% for 12 MDS patients, using monoclonal antibodies and immunomagnetic microspheres (MDS CD34+ cells). The purified CD34+ cells were cultured for 14 days with various combinations of cytokines, including recombinant human macrophage colony-stimulating factor (rM-CSF), granulocyte-CSF (rG-CSF), granulocyte-macrophage-CSF (rGM-CSF), interleukin-3 (rIL-3), and stem cell factor (SCF; a ligand for c-kit) in serum-free medium. The clonal growth of MDS CD34+ cells supported by a combination of all of the above cytokines was subdivided into the two patterns of leukemic or nonleukemic, and then the role of individual or combined cytokines in proliferation and differentiation of MDS CD34+ cells was analyzed in each group. Evidence we obtained showed that SCF plays a central role in the leukemic-type growth of MDS CD34+ cells and that G-CSF, GM-CSF; and/or IL-3 synergize with SCF to increase undifferentiated blast cell colonies and clusters over that seen in normal CD34+ cells. SCF is present in either normal or MDS plasma at a level of nanograms per milliliter, and this physiologic concentration of SCF can stimulate progenitor cells. This means that progenitor cells are continuously exposed to stimulation by SCF in vivo and that MDS leukemic cells have a growth advantage over normal blast cells. This depends, at least in part, on cytokines such as G-CSF, GM-CSF, IL-3, and SCF.


Blood ◽  
1980 ◽  
Vol 56 (6) ◽  
pp. 947-958 ◽  
Author(s):  
AW Burgess ◽  
D Metcalf

Granulocyte-macrophage colony stimulating factor (GM-CSF) stimulates the in vitro proliferation and differentiation of granulocytic and macrophage cells. This regulator is now known to act at other levels of hemopoietic regulation. The heterogeneity of GM-CSFs is not only related to the tissue of origin and the in vitro production method, but also to functional subclasses of the molecule that have distinct biologic specificities. Most adult mouse organs produce GM-CSF (mol wt 23,000), but a macrophage (M)-CSF has been detected in fetal conditioned medium (CM) and isolated from L-cell CM. Murine endotoxin serum appears to contain a M-CSF, GM-CSF, and G-CSF, the last of which cofractionates with a differentiation factor active on leukemic cells. Human GM-CSFs, G-CSF, and EO-CSFs active on human cells have been detected in a variety of CM, but as yet none have been purified. Again, there are subclasses of progenitor cells that respond to particular forms of human active CSFs. GM-CSF isolated from mouse lung CM stimulates multipotential progenitor cells, the initial proliferatin of progenitors in the erythroid, eosinophil, and megakaryocyte series, as well as mature cells in the GM series. While GM-CSF is also able to stimulate the differentiation of myeloid leukemic cells, other factors appear to be more potent in this respect. Information on the regulation of GM-CSF production, on the modulators of its action on specific target cells, and on its role in vivo will be required before the physiologic function of this molecule can be properly assessed.


Blood ◽  
1980 ◽  
Vol 56 (6) ◽  
pp. 947-958 ◽  
Author(s):  
AW Burgess ◽  
D Metcalf

Abstract Granulocyte-macrophage colony stimulating factor (GM-CSF) stimulates the in vitro proliferation and differentiation of granulocytic and macrophage cells. This regulator is now known to act at other levels of hemopoietic regulation. The heterogeneity of GM-CSFs is not only related to the tissue of origin and the in vitro production method, but also to functional subclasses of the molecule that have distinct biologic specificities. Most adult mouse organs produce GM-CSF (mol wt 23,000), but a macrophage (M)-CSF has been detected in fetal conditioned medium (CM) and isolated from L-cell CM. Murine endotoxin serum appears to contain a M-CSF, GM-CSF, and G-CSF, the last of which cofractionates with a differentiation factor active on leukemic cells. Human GM-CSFs, G-CSF, and EO-CSFs active on human cells have been detected in a variety of CM, but as yet none have been purified. Again, there are subclasses of progenitor cells that respond to particular forms of human active CSFs. GM-CSF isolated from mouse lung CM stimulates multipotential progenitor cells, the initial proliferatin of progenitors in the erythroid, eosinophil, and megakaryocyte series, as well as mature cells in the GM series. While GM-CSF is also able to stimulate the differentiation of myeloid leukemic cells, other factors appear to be more potent in this respect. Information on the regulation of GM-CSF production, on the modulators of its action on specific target cells, and on its role in vivo will be required before the physiologic function of this molecule can be properly assessed.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 168
Author(s):  
Susanna Fiorelli ◽  
Nicola Cosentino ◽  
Benedetta Porro ◽  
Franco Fabbiocchi ◽  
Giampaolo Niccoli ◽  
...  

Netrin-1 is a laminin-like protein that plays a pivotal role in cell migration and, according to the site of its release, exerts both pro and anti-atherosclerotic functions. Macrophages, key cells in atherosclerosis, are heterogeneous in morphology and function and different subpopulations may support plaque progression, stabilization, and/or regression. Netrin-1 was evaluated in plasma and, together with its receptor UNC5b, in both spindle and round monocyte-derived macrophages (MDMs) morphotypes from coronary artery disease (CAD) patients and control subjects. In CAD patients, plaque features were detected in vivo by optical coherence tomography. CAD patients had lower plasma Netrin-1 levels and a higher MDMs expression of both protein and its receptor compared to controls. Specifically, a progressive increase in Netrin-1 and UNC5b was evidenced going from controls to stable angina (SA) and acute myocardial infarction (AMI) patients. Of note, spindle MDMs of AMI showed a marked increase of both Netrin-1 and its receptor compared to spindle MDMs of controls. UNC5b expression is always higher in spindle compared to round MDMs, regardless of the subgroup. Finally, CAD patients with higher intracellular Netrin-1 levels showed greater intraplaque macrophage accumulation in vivo. Our findings support the role of Netrin-1 and UNC5b in the atherosclerotic process.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Hyun-Jai Cho ◽  
Hyun-Ju Cho ◽  
Yoo-Wook Kwon ◽  
Young-Bae Park ◽  
Hyo-Soo Kim

Background: We recently identified bone marrow (BM)-derived artery resident calcifying progenitor cells. Sca-1+PDGFRα- cells may possess bipotent (osteoblastic/osteoclastic) characteristics. However, the nature of progenitor cells remains elusive. Hypothesis: We investigated developmental hierarchy of progenitor cells and in vivo dynamics in atherosclerosis. Methods and Results: We harvested cells from BM and artery of C57 mice. In BM, Lin-CD29+Sca-1+PDGFRα- cells showed hematopoietic potential and differentiated into osteoclasts (OC). They also possessed mesenchymal stem cell property including osteoblastic (OB) differentiation, suggesting that Sca-1+PDGFRα- cells could be mesodermal progenitor cells. Interestingly, BM-derived artery-resident, clonal Sca-1+PDGFRα- cells maintained bipotency but lost hematopoietic nature. In contrast, Sca-1+PDGFRα+ cells in BM and artery only showed unipotency (OB). When we overexpressed or knocked down PDGFRα, there was no alteration in OB or OC differentiation of Sca-1+PDGFRα- cells and no effect on OB differentiation of Sca-1+PDGFRα+ cells, indicating PDGFRα as a surface marker but not a functional player. In hyperlipidemic ApoE-KO mice compared with control, Sca-1+PDGFRα- cells were less mobilized from BM to peripheral circulation and less infiltrated into atherosclerotic plaque, whereas Sca-1+PDGFRα+ cells were not significantly affected. Multiplex cytokine assay of serum and artery revealed that IL-1β was significantly increased and IL-5 was markedly decreased in atherosclerotic mice. IL-1β decreased the migration of Sca-1+PDGFRα- cells by 5 folds compared with TNFα, and IL-5 increased the migration as much as TNFα. But the migration of Sca-1+PDGFRα+ cells was not altered. These data indicate that atherosclerosis-related humoral factors mainly regulated mesodermal progenitor cells’ dynamics. Conclusion: We demonstrate that Sca-1+PDGFRα- cell is a mesodermal progenitor cell that possesses both hematopoietic and mesenchymal potentials. In atherogenesis, the mobilization and infiltration of Sca-1+PDGFRα- progenitor cells were regulated by IL-1β and IL-5. These data provide a novel mechanism regarding the role of bipotent progenitor cells in atherosclerosis.


Blood ◽  
2015 ◽  
Vol 125 (25) ◽  
pp. 3896-3904 ◽  
Author(s):  
Christian Schwartz ◽  
Ralf Willebrand ◽  
Silke Huber ◽  
Rudolf A. Rupec ◽  
Davina Wu ◽  
...  

Key Points IL-3, IL-5, and GM-CSF promote eosinophil survival by NF-κB–induced upregulation of Bcl-xL, which can be blocked by specific inhibitors. Specific and constitutive deletion of the inhibitor of NF-κB (IκBα) in eosinophils in vivo reduced apoptosis during helminth infection.


1998 ◽  
Vol 72 (6) ◽  
pp. 5121-5127 ◽  
Author(s):  
Prasad S. Koka ◽  
John K. Fraser ◽  
Yvonne Bryson ◽  
Gregory C. Bristol ◽  
Grace M. Aldrovandi ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected individuals often exhibit multiple hematopoietic abnormalities reaching far beyond loss of CD4+ lymphocytes. We used the SCID-hu (Thy/Liv) mouse (severe combined immunodeficient mouse transplanted with human fetal thymus and liver tissues), which provides an in vivo system whereby human pluripotent hematopoietic progenitor cells can be maintained and undergo T-lymphoid differentiation and wherein HIV-1 infection causes severe depletion of CD4-bearing human thymocytes. Herein we show that HIV-1 infection rapidly and severely decreases the ex vivo recovery of human progenitor cells capable of differentiation into both erythroid and myeloid lineages. However, the total CD34+ cell population is not depleted. Combination antiretroviral therapy administered well after loss of multilineage progenitor activity reverses this inhibitory effect, establishing a causal role of viral replication. Taken together, our results suggest that pluripotent stem cells are not killed by HIV-1; rather, a later stage important in both myeloid and erythroid differentiation is affected. In addition, a primary virus isolated from a patient exhibiting multiple hematopoietic abnormalities preferentially depleted myeloid and erythroid colony-forming activity rather than CD4-bearing thymocytes in this system. Thus, HIV-1 infection perturbs multiple hematopoietic lineages in vivo, which may explain the many hematopoietic defects found in infected patients.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 375-382 ◽  
Author(s):  
J Lotem ◽  
L Sachs

The normal myeloid hematopoietic regulatory proteins include one class of proteins that induces viability and multiplication of normal myeloid precursor cells to form colonies (colony-stimulating factors [CSF] and interleukin 3 [IL-3], macrophage and granulocyte inducing proteins, type 7 [MGI-1]) and another class (called MGI-2) that induces differentiation of normal myeloid precursors without inducing cell multiplication. Different clones of myeloid leukemic cells can differ in their response to these regulatory proteins. One type of leukemic clone can be differentiated in vitro to mature cells by incubating with the growth-inducing proteins granulocyte-macrophage (GM) CSF or IL-3, and another type of clone can be differentiated in vitro to mature cells by the differentiation-inducing protein MGI-2. We have now studied the ability of different myeloid regulatory proteins to induce the in vivo differentiation of these different types of mouse myeloid leukemic clones in normal and cyclophosphamide-treated mice. The results show that in both types of mice (a) the in vitro GM-CSF- and IL- 3-sensitive leukemic cells were induced to differentiate to mature cells in vivo in mice injected with pure recombinant GM-CSF and IL-3 but not with G-CSF, M-CSF, or MGI-2; (b) the in vitro MGI-2-sensitive leukemic cells differentiated in vivo by injection of MGI-2 and also, presumably indirectly, by GM-CSF and IL-3 but not by M-CSF or G-CSF; (c) in vivo induced differentiation of the leukemic cells was associated with a 20- to 60-fold decrease in the number of blast cells; and (d) all the injected myeloid regulatory proteins stimulated the normal myelopoietic system. Different normal myeloid regulatory proteins can thus induce in vivo terminal differentiation of leukemic cells, and it is suggested that these proteins can have a therapeutic potential for myeloid leukemia in addition to their therapeutic potential in stimulating normal hematopoiesis.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-15
Author(s):  
Sara El Hoss ◽  
Sylvie Cochet ◽  
Auria Godard ◽  
Hongxia Yan ◽  
Michaël Dussiot ◽  
...  

Sickle cell disease (SCD) is an autosomal hereditary recessive disorder caused by a point mutation in the β globin gene resulting in a Glu-to-Val substitution at the 6th position of the β globin protein. The resulting abnormal hemoglobin (HbS) polymerizes under hypoxic conditions driving red blood cell (RBC) sickling (Pauling et al., 1949). While pathobiology of circulating RBCs has been extensively analyzed in SCD, erythropoiesis is surprisingly poorly documented. In β-thalassemia, ineffective erythropoiesis is characterized by high levels of apoptotic erythroblasts during the late stages of terminal differentiation, due to an accumulation of free β-globin chains (Arlet et al., 2016). Ineffective erythropoiesis is the major cause of anemia in β-thalassemia patients. In contrast, a marked decrease in life span of circulating red cells, a feature of sickle red cells, is considered to be the major determinant of chronic anemia in SCD. It is generally surmised that ineffective erythropoiesis contributes little to anemia. The bone marrow environment has been well documented to be hypoxic (0.1 to 6% O2) (Mantel et al., 2015). As hypoxia induces HbS polymerization, we hypothesized that cell death may occur in vivo because of HbS polymer formation in the late stages of differentiation characterized by high intracellular hemoglobin concentration. In the present study, using both in vitro and in vivo derived human erythroblasts we assessed the extent of ineffective erythropoiesis in SCD. We explored the mechanistic basis of the ineffective erythropoiesis in SCD using biochemical, cellular and imaging techniques. In vitro erythroid differentiation using CD34+ cells isolated from SCD patients and from healthy donors was performed. A 2-phase erythroid differentiation protocol was used and cultures were performed at two different oxygen conditions, i.e. normoxia and partial hypoxia (5% O2). We found that hypoxia induces cell death of sickle erythroblasts starting at the polychromatic stage, positively selecting cells with high levels of fetal hemoglobin (HbF). This inference was supported by flow cytometry data showing higher percentages of dead cells within the non-F-cell population as compared to the F-cell population for SCD cells. Moreover, SCD dead cells showed higher levels of chaperon protein HSP70 in the cytoplasm than live cells, while no difference was detected between both subpopulations for control cells, suggesting that cell death of SCD erythroblasts was probably due to HSP70 cytoplasmic sequestration. This was supported by western-blot experiments showing less HSP70 in the nucleus of SCD erythroblasts under hypoxia, associated with decreased levels of GATA-1. At the molecular level, HSP70 was co-immunoprecipitated with HbS under hypoxia indicating that both proteins were in the same complex and suggesting interaction between HSP70 and HbS polymers in the cyotplasm. Importantly, we confirm these results in vivo by showing that in bone marrow of SCD patients (n = 5) cell loss occurs during terminal erythroid differentiation, with a significant drop in the cell count between the polychromatic and the orthochromatic stages (Figure 1). In order to specifically address the role of HbF in cell survival, we used a CRISPR-Cas9 approach to mimic the effect of hereditary persistence of fetal hemoglobin (HPFH). CD34+ cells were transfected either with a gRNA targeting the LRF binding site (-197) or a gRNA targeting an unrelated locus (AAVS1) (Weber, Frati, et al. 2020). As expected, the disruption of the LRF binding site resulted in HbF induction as shown by higher %F-cells compared to AAVS1 control. These higher levels of F-cells resulted in decreased apoptosis, under both normoxic and hypoxic conditions, clearly demonstrating the positive and selective effect of HbF on SCD cell survival (Figure 2). In summary, our study shows that HbF has a dual beneficial effect in SCD by conferring a preferential survival of F-cells in the circulation and by decreasing ineffective erythropoiesis. These findings thus bring new insights into the role of HbF in modulating clinical severity of anemia in SCD by both regulating red cell production and red cell destruction. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1990 ◽  
Vol 75 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
DC Dale ◽  
WP Hammond

Abstract The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units- erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin- 3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G- CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.


Sign in / Sign up

Export Citation Format

Share Document