scholarly journals Mechanism and effects of the binding of lupus anticoagulant IgG and prothrombin to surface phospholipid

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4173-4182 ◽  
Author(s):  
LV Rao ◽  
AD Hoang ◽  
SI Rapaport

Abstract We report here experiments on how lupus anticoagulant antibodies (LA IgG) that react with prothrombin bind to surface phospholipid and affect prothrombin's affinity for surface phospholipid and activation to thrombin. LA IgG was purified by protein A chromatography from the plasma of 16 patients of whom four had associated hypoprothrombinemia and 10 had experienced thrombosis. Many LA IgG bound, in the absence of phospholipid and calcium, not only to immobilized prothrombin but to both prothrombin 1 and fragment 1, which established at least an oligoclonal origin of LA IgG. No LA IgG bound to thrombin. Although prothrombin and Ca2+ were required to support binding of LA IgG to immobilized phosphatidylserine (PS), prothrombin at higher concentrations inhibited binding, presumably by competing with prothrombin/LA IgG complexes for PS binding sites. Prothrombin 1, which cannot bind to PS, also inhibited binding of many LA IgG to PS, presumably by forming competing soluble prothrombin 1/LA IgG complexes. Despite their ability to react with prothrombin independent of phospholipid, LA IgG enhanced binding of prothrombin to immobilized phospholipid and to cultured human umbilical vein endothelial cells. Prothrombin bound with LA IgG to the surface of endothelial cell monolayers could be activated to thrombin after supernatant prothrombin and LA IgG were washed away. The relation is discussed of these observations to a hypothesis that LA IgG mediated concentration of prothrombin on cell surface phospholipid represents a mechanism by which LA IgG could increase thrombotic risk.

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4173-4182 ◽  
Author(s):  
LV Rao ◽  
AD Hoang ◽  
SI Rapaport

We report here experiments on how lupus anticoagulant antibodies (LA IgG) that react with prothrombin bind to surface phospholipid and affect prothrombin's affinity for surface phospholipid and activation to thrombin. LA IgG was purified by protein A chromatography from the plasma of 16 patients of whom four had associated hypoprothrombinemia and 10 had experienced thrombosis. Many LA IgG bound, in the absence of phospholipid and calcium, not only to immobilized prothrombin but to both prothrombin 1 and fragment 1, which established at least an oligoclonal origin of LA IgG. No LA IgG bound to thrombin. Although prothrombin and Ca2+ were required to support binding of LA IgG to immobilized phosphatidylserine (PS), prothrombin at higher concentrations inhibited binding, presumably by competing with prothrombin/LA IgG complexes for PS binding sites. Prothrombin 1, which cannot bind to PS, also inhibited binding of many LA IgG to PS, presumably by forming competing soluble prothrombin 1/LA IgG complexes. Despite their ability to react with prothrombin independent of phospholipid, LA IgG enhanced binding of prothrombin to immobilized phospholipid and to cultured human umbilical vein endothelial cells. Prothrombin bound with LA IgG to the surface of endothelial cell monolayers could be activated to thrombin after supernatant prothrombin and LA IgG were washed away. The relation is discussed of these observations to a hypothesis that LA IgG mediated concentration of prothrombin on cell surface phospholipid represents a mechanism by which LA IgG could increase thrombotic risk.


Blood ◽  
1983 ◽  
Vol 62 (3) ◽  
pp. 549-556 ◽  
Author(s):  
M Laposata ◽  
DK Dovnarsky ◽  
HS Shin

Abstract When thrombin is incubated with confluent monolayers of human umbilical vein endothelial cells in vitro, there is a change in the shape of the endothelial cells that results in gaps in the monolayer, disrupting the integrity of the endothelium and exposing the subendothelium. Using a grid assay to measure this phenomenon, we observed that up to 80% of the surface area once covered by cells was uncovered after a 15-min incubation with 10(-2) U/ml (10(-10)M) thrombin. The effect was apparent within 2 min and did not remove cells from the surface of the culture dish. The gaps in the monolayer completely disappeared within 2 hr after exposure to thrombin. The effect of thrombin was inhibited by preincubation of thrombin with hirudin or antithrombin III plus heparin or by preincubation of the monolayers with dibutyryl cyclic adenosine monophosphate (dbcAMP). Histamine also induced gap formation in endothelial cell monolayers. Both pyrilamine and cimetidine prevented the histamine-induced effect, but they had no effect on thrombin- induced gap formation. Intact monolayers were not disrupted by bradykinin, serotonin, C5a, or C3a. Our results suggest that small amounts of thrombin can induce repeated and transient exposure of the subendothelium, a situation believed to be conducive to atherogenesis and thrombosis.


Blood ◽  
1983 ◽  
Vol 62 (3) ◽  
pp. 549-556 ◽  
Author(s):  
M Laposata ◽  
DK Dovnarsky ◽  
HS Shin

When thrombin is incubated with confluent monolayers of human umbilical vein endothelial cells in vitro, there is a change in the shape of the endothelial cells that results in gaps in the monolayer, disrupting the integrity of the endothelium and exposing the subendothelium. Using a grid assay to measure this phenomenon, we observed that up to 80% of the surface area once covered by cells was uncovered after a 15-min incubation with 10(-2) U/ml (10(-10)M) thrombin. The effect was apparent within 2 min and did not remove cells from the surface of the culture dish. The gaps in the monolayer completely disappeared within 2 hr after exposure to thrombin. The effect of thrombin was inhibited by preincubation of thrombin with hirudin or antithrombin III plus heparin or by preincubation of the monolayers with dibutyryl cyclic adenosine monophosphate (dbcAMP). Histamine also induced gap formation in endothelial cell monolayers. Both pyrilamine and cimetidine prevented the histamine-induced effect, but they had no effect on thrombin- induced gap formation. Intact monolayers were not disrupted by bradykinin, serotonin, C5a, or C3a. Our results suggest that small amounts of thrombin can induce repeated and transient exposure of the subendothelium, a situation believed to be conducive to atherogenesis and thrombosis.


2004 ◽  
Vol 92 (08) ◽  
pp. 403-412 ◽  
Author(s):  
Xiaojun Guan ◽  
Jose Juarez ◽  
Xiaoping Qi ◽  
Natalya Shipulina ◽  
David Shaw ◽  
...  

SummaryThe anti-angiogenic properties of the histidine-proline–rich (H/P) domain of HPRG have recently been described (Juarez JC, et al. Cancer Research 2002; 62: 5344-50). However, the binding site that mediates these properties is unknown. HPRG is evolutionarily, functionally and structurally related to cleaved high molecular weight kininogen (HKa), an anti-angiogenic polypeptide that stimulates apoptosis of proliferating endothelial cells through binding to cell-surface tropomyosin (Zhang J-C, et al. Proc Natl Acad Sci USA 2002; 99: 12224-9). In this study, we demonstrate that HPRG binds with high affinity to FGF-2–stimulated human umbilical vein endothelial cells (HUVEC) and immobilized tropomyosin in a Zn2+ or pH-dependent manner, and that this interaction is mediated by the H/P domain of HPRG. At least two binding sites for HPRG, tropomyosin and heparan sulfate proteoglycans (HSPs), were identified on the surface of FGF-2–activated endothelial cells. Translocation of tropomyosin to the surface of HUVEC occurred in response to FGF-2, and the anti-angiogenic activity of HPRG in a Matrigel plug model was partially inhibited by soluble tropomyosin. These results suggest that HPRG binds to endothelial cell surface tropomyosin which at least partially mediates the antiangiogenic effects of HPRG.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Silvia Franceschelli ◽  
Anna Paola Bruno ◽  
Michela Festa ◽  
Antonia Falco ◽  
Elisa Gionti ◽  
...  

Phenethyl isothiocyanate (PEITC), a cruciferous vegetable-derived compound, is a versatile cancer chemopreventive agent that displays the ability to inhibit tumor growth during initiation, promotion, and progression phases in several animal models of carcinogenesis. In this report, we dissect the cellular events induced by noncytotoxic concentrations of PEITC in human umbilical vein endothelial cells (HUVECs). In the early phase, PEITC treatment elicited cells’ morphological changes that comprise reduction in cell volume and modification of actin organization concomitantly with a rapid activation of the PI3K/Akt pathway. Downstream to PI3K, PEITC also induces the activity of Rac1 and activation of c-Jun N-terminal kinase (JNK), well-known regulators of actin cytoskeleton dynamics. Interestingly, PEITC modifications of the actin cytoskeleton were abrogated by pretreatment with JNK inhibitor, SP600125. JNK signaling led also to the activation of the c-Jun transcription factor, which is involved in the upregulation of several genes; among them is the BAG3 protein. This protein, a member of the BAG family of heat shock protein (Hsp) 70 cochaperones, is able to sustain survival in different tumor cell lines and neoangiogenesis by directly regulating the endothelial cell cycle. Furthermore, BAG3 is involved in maintaining actin folding. Our findings indicate that BAG3 protein expression is induced in endothelial cells upon exposure to a noncytotoxic concentration of PEITC and its expression is requested for the recovery of normal cell size and morphology after the stressful stimuli. This assigns an additional role for BAG3 protein in the endothelial cells after a stress event.


1989 ◽  
Vol 62 (02) ◽  
pp. 699-703 ◽  
Author(s):  
Rob J Aerts ◽  
Karin Gillis ◽  
Hans Pannekoek

SummaryIt has recently been shown that the fibrinolytic components plasminogen and tissue-type plasminogen activator (t-PA) both bind to cultured human umbilical vein endothelial cells (HUVEC). After cleavage of t-PA by plasmin, “single-chain” t-PA (sct-PA) is converted into “two-chain” t-PA (tct-PA), which differs from the former in a number of respects. We compared binding of sct-PA and tct-PA to the surface of HUVEC. Removal of t-PA bound to HUVEC by a mild treatment with acid and a subsequent quantification of eluted t-PA both by activity- and immunoradiometric assays revealed that, at concentrations between 10 and 500 nM, HUVEC bind about 3-4 times more sct-PA than tct-PA. At these concentrations, both sct-PA and tct-PA remain active when bound to HUVEC. Mutual competition experiments showed that sct-PA and tct-PA can virtually fully inhibit binding of each other to HUVEC, but that an about twofold higher concentration of tct-PA is required to prevent halfmaximal binding of sct-PA than visa versa. These results demonstrate that sct-PA and tct-PA bind with different affinities to the same binding sites on HUVEC.


1996 ◽  
Vol 75 (03) ◽  
pp. 497-502 ◽  
Author(s):  
Hadewijch L M Pekelharing ◽  
Henne A Kleinveld ◽  
Pieter F C.C.M Duif ◽  
Bonno N Bouma ◽  
Herman J M van Rijn

SummaryLp(a) is an LDL-like lipoprotein plus an additional apolipoprotein apo(a). Based on the structural homology of apo(a) with plasminogen, it is hypothesized that Lp(a) interferes with fibrinolysis. Extracellular matrix (ECM) produced by human umbilical vein endothelial cells was used to study the effect of Lp(a) and LDL on plasminogen binding and activation. Both lipoproteins were isolated from the same plasma in a single step. Plasminogen bound to ECM via its lysine binding sites. Lp(a) as well as LDL were capable of competing with plasminogen binding. The degree of inhibition was dependent on the lipoprotein donor as well as the ECM donor. When Lp(a) and LDL obtained from one donor were compared, Lp(a) was always a much more potent competitor. The effect of both lipoproteins on plasminogen binding was reflected in their effect on plasminogen activation. It is speculated that Lp(a) interacts with ECM via its LDL-like lipoprotein moiety as well as via its apo(a) moiety.


1996 ◽  
Vol 270 (6) ◽  
pp. L973-L978 ◽  
Author(s):  
A. Siflinger-Birnboim ◽  
H. Lum ◽  
P. J. Del Vecchio ◽  
A. B. Malik

We studied the role of Ca2+ in mediating the hydrogen peroxide (H2O2)-induced increase in endothelial permeability to 125I-labeled albumin using bovine pulmonary microvessel endothelial cells (BMVEC). Changes in cytosolic-free Ca2+ ([Ca2+]i) were monitored in BMVEC monolayers loaded with the Ca(2+)-sensitive membrane permeant fluorescent dye fura 2-AM. H2O2 (100 microM) produced a rise in [Ca2+]i within 10 s that was reduced by the addition of EGTA to the medium. Uptake of 45Ca2+ from the extracellular medium increased in the presence of H2O2 (100 microM) compared with control monolayers, suggesting that the H2O2-induced rise in [Ca2+]i is partly the result of extracellular Ca2+ influx. The effects of [Ca2+]i on endothelial permeability were addressed by pretreatment of BMVEC monolayers with BAPTA-AM (3-5 microM), a membrane permeant Ca2+ chelator, before the H2O2 exposure. BAPTA-AM produced an approximately 50% decrease in the H2O2-induced increase in endothelial permeability compared with endothelial cell monolayers exposed to H2O2 alone. The increase in endothelial permeability was independent of Ca2+ influx, since LaCl3 (0-100 microM), which displaces Ca2+ from binding sites on the cell surface, did not modify the permeability response. These results indicate that the rise in [Ca2+]i produced by H2O2 is a critical determinant of the increase in endothelial permeability.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Vinicius P Garcia ◽  
Jamie G Hijmans ◽  
Kelly A Stockelman ◽  
Madden Brewster ◽  
Hannah Fandl ◽  
...  

Introduction: Endothelial nitric oxide synthase (eNOS) activity is critical to vascular health. Impaired eNOS activity and diminished NO production are common characteristics of a proatherogenic, dysfunctional endothelial phenotype that is associated with cardiovascular risk factors and disease. Extracellular microvesicles, particularly endothelial cell derived microvesicles (EMVs) represent novel mechanistic mediators of endothelial dysfunction and vascular disease. It is unknown whether eNOS suppression affects EMV number and function. We tested the following hypotheses: 1) eNOS blockade increases EMV release; and 2) EMVs derived from eNOS-suppressed cells adversely affect endothelial cell inflammation, apoptosis and NO production. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor, L-N G -Nitroarginine methyl ester (L-NAME; 300mM) for 24 h. EMVs (CD144 + ) released into the supernatant from cells treated with L-NAME or vehicle were isolated and quantified by flow cytometry. Fresh HUVECs were then treated with either L-NAME-derived or control EMVs for 24 h. To evaluate the role of endocytosis on the endothelial effects of EMVs, HUVECs were pre-incubated (12 h) with EIPA, filipin and chlorpromazine for 2 h, and all experiments repeated. Results: EMV release was markedly higher (~100%; P<0.05) in cells treated with L-NAME compared with control (81±6 vs. 40±7 EMV/μL). L-NAME-generated EMVs induced significantly higher release of IL-6 (38.4±5.1 vs. 21.0±1.9 pg/mL) and IL-8 (38.9±3.5 vs. 27.2±3.1 pg/mL) as well as greater active NF-κB p65 (Ser-536) (9.7±0.7 vs. 6.1±0.6 AU) expression than control EMVs. The expression of activated-caspase-3 was significantly higher in the cells treated with L-NAME (9.5±1.1 vs. 6.4±0.4 AU). Total eNOS (97.1±8.2 vs. 157.5±15.6 AU), activated eNOS (4.9±1.2 vs. 9.1±1.3 AU) and NO production (5.0±0.8 vs. 7.0±0.6 μmol/L) were significantly lower in endothelial cells treated with EMVs from eNOS suppressed cells. Endocytosis blockers mitigated the deleterious endothelial effects of EMVs. Conclusion: eNOS-suppression increases EMV release. Moreover, EMVs from eNOS-suppressed cells increase endothelial cell inflammation and apoptosis and decrease NO production.


1987 ◽  
Author(s):  
W Petraiuolo ◽  
E Bovill ◽  
J Hoak

Decreased endothelial cell production of prostacyclin (PGI2) in response to the lupus anticoagulant has been previously demonstrated, and postulated to have a causal relationship to the thrombotic events associated with the lupus anticoagulant. Five patients who exhibited the anticoagulant were studied in an effort to determine if a relationship exists between exposure of endothelial cells to the lupus anticoagulant and decreased production of prostacyclin (PGI2). Human endothelial cells derived from human umbilical vein grown in culture were exposed to IgG fractions of patient plasmas containing the lupus anticoagulant. The amount of PGI2 released was determined by radioimmunoassay for 6-keto-PGF-l-alpha. The average PGI2 release in the controls was 20.6 picomol/500,000 endothelial cells, whereas those cells exposed to the lupus anticoagulant had a range of 25 to 114 picmol/500,000 cells. We were unable to demonstrate inhibition of the release of PGI2 by human endothelial cells, following exposure to the lupus anticoagulant.(Supported by NIH Grant HL 33723-2 and a Specialized Center of Research in Thrombosis Award HL 35058-01 from the National Heart, Lung and Blood Institute.)


Sign in / Sign up

Export Citation Format

Share Document