scholarly journals Lyn Physically Associates With the Erythropoietin Receptor and May Play a Role in Activation of the Stat5 Pathway

Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3734-3745 ◽  
Author(s):  
Hiroshi Chin ◽  
Ayako Arai ◽  
Hiroshi Wakao ◽  
Ryuichi Kamiyama ◽  
Nobuyuki Miyasaka ◽  
...  

Abstract Protein tyrosine phosphorylation plays a crucial role in signaling from the receptor for erythropoietin (Epo), although the Epo receptor (EpoR) lacks the tyrosine kinase domain. We have previously shown that the Jak2 tyrosine kinase couples with the EpoR to transduce a growth signal. In the present study, we demonstrate that Lyn, a Src family tyrosine kinase, physically associates with the EpoR in Epo-dependent hematopoietic cell lines, 32D/EpoR-Wt and F36E. Coexpression experiments in COS7 cells further showed that Lyn induces tyrosine phosphorylation of the EpoR and that both LynA and LynB, alternatively spliced forms of Lyn, bind with the membrane-proximal 91-amino acid region of the EpoR cytoplasmic domain. In vitro binding studies using GST-Lyn fusion proteins further showed that the Src homology (SH)-2 domain of Lyn specifically binds with the tyrosine-phosphorylated EpoR in lysate from Epo-stimulated cells, whereas the tyrosine kinase domain of Lyn binds with the unphosphorylated EpoR. Far-Western blotting and synthetic phosphopeptide competition assays further indicated that the Lyn SH2 domain directly binds to the tyrosine-phosphorylated EpoR, most likely through its interaction with phosphorylated Y-464 or Y-479 in the carboxy-terminal region of the EpoR. In vitro binding studies also demonstrated that the Lyn SH2 domain directly binds to tyrosine-phosphorylated Jak2. In vitro reconstitution experiments in COS7 cells further showed that Lyn induces tyrosine phosphorylation of Stat5, mainly on Y-694, and activates the DNA-binding and transcription-activating abilities of Stat5. In agreement with this, Lyn enhanced the Stat5-dependent transcriptional activation when overexpressed in 32D/EpoR-Wt cells. In addition, Lyn was demonstrated to phosphorylate the EpoR and Stat5 on tyrosines in vitro. These results suggest that Lyn may play a role in activation of the Jak2/Stat5 and other signaling pathways by the EpoR.

Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3734-3745 ◽  
Author(s):  
Hiroshi Chin ◽  
Ayako Arai ◽  
Hiroshi Wakao ◽  
Ryuichi Kamiyama ◽  
Nobuyuki Miyasaka ◽  
...  

Protein tyrosine phosphorylation plays a crucial role in signaling from the receptor for erythropoietin (Epo), although the Epo receptor (EpoR) lacks the tyrosine kinase domain. We have previously shown that the Jak2 tyrosine kinase couples with the EpoR to transduce a growth signal. In the present study, we demonstrate that Lyn, a Src family tyrosine kinase, physically associates with the EpoR in Epo-dependent hematopoietic cell lines, 32D/EpoR-Wt and F36E. Coexpression experiments in COS7 cells further showed that Lyn induces tyrosine phosphorylation of the EpoR and that both LynA and LynB, alternatively spliced forms of Lyn, bind with the membrane-proximal 91-amino acid region of the EpoR cytoplasmic domain. In vitro binding studies using GST-Lyn fusion proteins further showed that the Src homology (SH)-2 domain of Lyn specifically binds with the tyrosine-phosphorylated EpoR in lysate from Epo-stimulated cells, whereas the tyrosine kinase domain of Lyn binds with the unphosphorylated EpoR. Far-Western blotting and synthetic phosphopeptide competition assays further indicated that the Lyn SH2 domain directly binds to the tyrosine-phosphorylated EpoR, most likely through its interaction with phosphorylated Y-464 or Y-479 in the carboxy-terminal region of the EpoR. In vitro binding studies also demonstrated that the Lyn SH2 domain directly binds to tyrosine-phosphorylated Jak2. In vitro reconstitution experiments in COS7 cells further showed that Lyn induces tyrosine phosphorylation of Stat5, mainly on Y-694, and activates the DNA-binding and transcription-activating abilities of Stat5. In agreement with this, Lyn enhanced the Stat5-dependent transcriptional activation when overexpressed in 32D/EpoR-Wt cells. In addition, Lyn was demonstrated to phosphorylate the EpoR and Stat5 on tyrosines in vitro. These results suggest that Lyn may play a role in activation of the Jak2/Stat5 and other signaling pathways by the EpoR.


Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4415-4425 ◽  
Author(s):  
H Chin ◽  
N Nakamura ◽  
R Kamiyama ◽  
N Miyasaka ◽  
JN Ihle ◽  
...  

Erythropoietin (Epo) and interleukin-3 (IL-3) stimulate activation of the Jak2 tyrosine kinase and induce tyrosine phosphorylation and activation of Stat5. In the present study, we have shown that Epo or IL-3 stimulation induces binding of Stat5 to the tyrosine-phosphorylated Epo receptor (EpoR) or IL-3 receptor beta subunit (betaIL3), respectively, in IL-3-dependent 32D cells expressing the EpoR. The binding of Stat5 to these cytokine receptors was shown to be rapid and transient, occurring within 1 minute of stimulation of cells and significantly decreasing after 5 minutes of cell treatment. In vivo binding experiments in COS cells showed that binding of Stat5 to the EpoR was mediated through the Stat5 Src homology 2 (SH2) domain. In vitro binding studies further showed that Stat5, but not other Stats examined, bound specifically to tyrosine-phosphorylated recombinant EpoR fusion proteins. In these in vivo and in vitro binding studies, Stat5 bound, albeit to a lesser degree, to truncated EpoR mutants in which all the intracellular tyrosines except Y-343 were removed. Furthermore, EpoR-derived synthetic phosphotyrosine peptides corresponding to Y-343, Y-401, Y-431, and Y-479 inhibited the in vitro binding of Stat5. When expressed in 32D cells, a mutant EpoR in which all the intracellular tyrosines were removed by carboxy-terminal truncation showed a significantly impaired ability to induce tyrosine phosphorylation of Stat5, particularly at low concentrations of Epo, but exhibited an increased sensitivity to Epo for growth signaling as compared with the wild-type EpoR. These results indicate that Stat5 specifically and transiently binds to the EpoR through the interaction between the Stat5 SH2 domain and specific phosphorylated tyrosines, including Y-343, in the EpoR cytoplasmic domain. It was implied that betaIL3 may also have similar Stat5 docking sites. The Stat5 docking sites in the EpoR were shown to facilitate specific activation of Stat5, which, however, may not be required for the EpoR-mediated growth signaling.


1997 ◽  
Vol 322 (3) ◽  
pp. 927-935 ◽  
Author(s):  
Vladimir JOUKOV ◽  
Mauno VIHINEN ◽  
Satu VAINIKKA ◽  
Janusz M. SOWADSKI ◽  
Kari ALITALO ◽  
...  

The lack of a conserved tyrosine autophosphorylation site is a unique feature of the C-terminal Src-kinase, Csk, although this protein tyrosine kinase can be autophosphorylated on tyrosine residues in vitro and in bacteria. Here we show that human Csk is tyrosine phosphorylated in HeLa cells treated with sodium pervanadate. Phosphorylation in vivo occurs mainly at Tyr-184 and in vitro mainly at Tyr-304. A Y304F mutation strongly decreased Csk phosphorylation in vitro, and a Y184F mutation abolished tyrosine phosphorylation in vivo. A catalytically inactive form of Csk was also phosphorylated on Tyr-184 in vivo, suggesting that this is not a site of autophosphorylation. The kinase activity of the Y184F protein was not changed, while the Y304F protein showed one-third of wild-type activity. Three-dimensional modelling of the Csk kinase domain indicated that the Y304F mutation abolishes one of two conserved hydrogen bonds between the upper and the lower lobes in the open conformation of the kinase domain. Phosphopeptide binding studies suggested that phosphorylation of Tyr-184 creates a binding site for low-molecular-mass proteins. Cellular Csk was associated with several phosphoproteins, some of which were interacting with the Csk SH2 domain. Taken together these results indicate that Csk can be phosphorylated in vivo at Tyr-184 by an as yet unknown tyrosine kinase, and that autophosphorylation of Tyr-304 occurs only at abnormally high Csk concentrations in vitro. Furthermore, Tyr-304 is required for the maintenance of the structure of the Csk kinase domain.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1501-1507 ◽  
Author(s):  
O Miura ◽  
N Nakamura ◽  
FW Quelle ◽  
BA Witthuhn ◽  
JN Ihle ◽  
...  

Abstract Protein tyrosine phosphorylation has been hypothesized to play a key role in the growth signaling induced by erythropoietin (Epo), although the Epo receptor (EpoR), a member of the cytokine receptor superfamily, lacks a tyrosine kinase domain. Recently, the JAK2 tyrosine kinase was shown to be activated on Epo stimulation and to bind to the cytoplasmic domain of EpoR in vitro. To further explore the mechanisms of activation of JAK2 in EpoR-mediated signal transduction, we assessed the conditions for association of JAK2 with EpoR in vivo. Epo stimulation rapidly induced association of JAK2 with the EpoR in an interleukin 3 (IL-3)-dependent cell line transfected with the wild-type EpoR. On Epo stimulation JAK2 also associated with a truncated mutant EpoR (H-mutant), which is mitogenetically active but not tyrosine phosphorylated, indicating that association does not require receptor phosphorylation and occurs in the membrane proximal region. However, association was not detected with mutant receptors inactivated by an internal deletion or a point mutation, Trp282 to Arg, in a membrane- proximal cytoplasmic region (PB or PM4 mutant, respectively). Immune complex kinase assays of anti-EpoR immunoprecipitates also revealed that activated JAK2 associates with the EpoR in Epo-stimulated cells. By this approach, association also occurred with the mitogenically active H mutant but not with the mitogenically inactive PB or PM4 mutants. In the immune complex kinases assays, EpoR, JAK2, and a 150-kD protein were phosphorylated on tyrosine. Taken together, the results further support the hypothesis that, on Epo stimulation, JAK2 associates with the membrane-proximal cytoplasmic region of the EpoR to be activated and induces tyrosine phosphorylation of cellular substrates, including the EpoR, to transduce a growth signal.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 141-141 ◽  
Author(s):  
Catherine C Smith ◽  
Elisabeth Lasater ◽  
Melissa Mccreery ◽  
Kimberly Lin ◽  
Whitney Stewart ◽  
...  

Abstract Abstract 141 Background: The clinically active FLT3 inhibitor AC220 is vulnerable in vitro to resistance-conferring mutations at 3 residues in the FLT3-ITD kinase domain: the “gatekeeper” residue F691, and activation loop (AL) residues D835 and Y842. Mutations at 2 of these residues, F691 and D835, were identified in 8/8 FLT3-ITD+ acute myeloid leukemia (AML) patients who relapsed on AC220, including mutations at residue D835 in 6/8 patients. A molecular docking analysis suggests that mutations at D835 favor the active “DFG-in” kinase conformation and thereby impair binding of AC220, which presumably requires an inactive conformation for binding (Smith, et al, Nature 2012). Therefore, we predict that a type I inhibitor capable of binding the “DFG-in” active conformation of FLT3 will be required to inhibit AC220-resistant FLT3-ITD AL mutants. Crenolanib (CP-868,596) is a potent, selective ATP-competitive inhibitor of the FLT3-related receptor tyrosine kinases PDGFR-a and -b. Notably, crenolanib retains activity against the imatinib-resistant PDGFR-a D842V mutation, which is analogous to the AC220-resistant FLT3-ITD/D835V mutation. Low micromolar concentrations of crenolanib have been safely achieved in a phase I study of solid tumor patients with a half-life of ∼14 hours (Lewis et al, JCO 2009). We hypothesized that crenolanib may be a Type I inhibitor of FLT3 that retains activity against FLT3 mutant isoforms, including AC220-resistant FLT3 AL mutants, which are highly cross-resistant to multiple FLT3 TKIs. Results: In vitro binding studies demonstrate that crenolanib binds preferentially to the phosphorylated form of ABL (Kd =140nM vs Kd=440nM for non-phosphorylated ABL), confirming crenolanib is a Type I inhibitor. Additionally, crenolanib potently binds native FLT3 in vitro (Kd=0.26nM) and retains affinity for FLT3 harboring substitutions at D835 (H/V/Y; Kd= 0.24, 0.048 and 0.26nM respectively). Crenolanib demonstrates substantially more potent in vitro binding affinity for the compound FLT3-ITD/D835V mutant than AC220 (Kd=0.05nM vs Kd=210nM). In cellular assays, crenolanib induces apoptosis and inhibits the proliferation of the patient-derived FLT3-ITD+ cell lines MV4;11 and Molm14 with an inhibitory concentration 50 (IC50) of 5.2 and 9nM, respectively. FLT3 autophosphorylation and downstream signaling in MV4;11 and Molm14 cells were inhibited at similar concentrations. Treatment with crenolanib prolonged survival in a murine bone marrow transplant model of FLT3-ITD+ leukemia. Crenolanib inhibits the proliferation of BaF/3 cells transformed with FLT3-ITD (IC50 7.8 nM), and retains activity in BaF/3 cells harboring highly AC220-resistant FLT3-ITD/D835V/Y/F and FLT3-ITD/Y842C/H mutants (IC50 15–19nM). Crenolanib also potently suppresses the growth of BaF/3 cell lines containing the FLT3-activating point mutations D835V and D835Y in the absence of ITD (IC50 3.1nM), which we have recently found to be associated with AC220 resistance (Smith et al, ASH 2012, submitted). The FLT3-ITD/F691L mutation confers modest resistance to crenolanib (IC50 49.7nM). Western blot analysis reveals dose-dependent decrease in FLT3 autophosphorylation and downstream signaling. Crenolanib potently inhibits the proliferation of an AC220-resistant Molm14 subclone that harbors a D835Y mutation (IC50 15.4nM). In these cells and native Molm14 cells, crenolanib appears to retain maximal biochemical inhibition of FLT3 autophosphorylation and downstream signaling at nanomolar concentrations in human plasma, indicating relatively low plasma protein binding. Finally, treatment with crenolanib inhibited FLT3 autophosphorylation in human primary FLT3-ITD+ AML cells, including those from a patient who developed resistance to AC220 associated with a D835 mutation. Conclusions: Crenolanib is a Type I inhibitor of FLT3 that retains activity in the low nanomolar range against native and AC220-resistant FLT3-ITD mutant isoforms in in vitro binding studies, cell line and murine leukemia models, as well as in primary human AML cells. Crenolanib therefore has the potential to be clinically active in AML patients with activating FLT3-ITD or AL mutations, and to recapture clinical response in patients with acquired AC220-resistant kinase domain mutations. Clinical trials of crenolanib in TKI-naïve and TKI-pretreated FLT3-mutant AML are currently being planned or have recently been initiated. Disclosures: Perl: Astellas Pharmaceuticals: Consultancy. Carroll:GlaxoSmithKlein: Research Funding. Shah:Ariad: Consultancy, Research Funding.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4135-4141 ◽  
Author(s):  
O Miura ◽  
Y Miura ◽  
N Nakamura ◽  
FW Quelle ◽  
BA Witthuhn ◽  
...  

The receptor for erythropoietin (Epo) belongs to the cytokine receptor family and lacks a tyrosine kinase domain. However, it has been hypothesized that a tyrosine kinase, Jak2, associates with the membrane proximal cytoplasmic region of Epo receptor (EpoR) and mediates the growth signaling from the receptor through tyrosine phosphorylation of cellular substrates. To explore the growth signaling pathways from the EpoR, we analyzed substrates of tyrosine phosphorylation induced by Epo stimulation in cells expressing various mutant EpoRs. The vav proto- oncogene product was found to be tyrosine phosphorylated after Epo stimulation in cells expressing the wild-type EpoR or a truncated receptor, H mutant, that retains the growth signaling function. In these cells, Epo also induced the expression of a serine/threonine kinase, Pim-1. However, Epo stimulation did not have any effect on Vav or Pim-1 in cells expressing a mutant EpoR, PM4 mutant, inactivated by a point mutation, Trp282 to Arg, in the membrane proximal region, which abrogates the interaction with Jak2. On the other hand, both tyrosine phosphorylation of Vav and expression of Pim-1 were observed constitutively in cells expressing a mutant EpoR that is constitutively activated by a point mutation, Arg 129 to Cys, in the extracellular domain. Jak2 was also constitutively tyrosine phosphorylated and activated in cells expressing this mutant, which confirms the crucial role of Jak2 in growth signaling from the EpoR. Taken together, these observations suggest that the tyrosine phosphorylation of Vav and the expression of Pim-1 may play important roles in growth signaling from the EpoR.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1501-1507 ◽  
Author(s):  
O Miura ◽  
N Nakamura ◽  
FW Quelle ◽  
BA Witthuhn ◽  
JN Ihle ◽  
...  

Protein tyrosine phosphorylation has been hypothesized to play a key role in the growth signaling induced by erythropoietin (Epo), although the Epo receptor (EpoR), a member of the cytokine receptor superfamily, lacks a tyrosine kinase domain. Recently, the JAK2 tyrosine kinase was shown to be activated on Epo stimulation and to bind to the cytoplasmic domain of EpoR in vitro. To further explore the mechanisms of activation of JAK2 in EpoR-mediated signal transduction, we assessed the conditions for association of JAK2 with EpoR in vivo. Epo stimulation rapidly induced association of JAK2 with the EpoR in an interleukin 3 (IL-3)-dependent cell line transfected with the wild-type EpoR. On Epo stimulation JAK2 also associated with a truncated mutant EpoR (H-mutant), which is mitogenetically active but not tyrosine phosphorylated, indicating that association does not require receptor phosphorylation and occurs in the membrane proximal region. However, association was not detected with mutant receptors inactivated by an internal deletion or a point mutation, Trp282 to Arg, in a membrane- proximal cytoplasmic region (PB or PM4 mutant, respectively). Immune complex kinase assays of anti-EpoR immunoprecipitates also revealed that activated JAK2 associates with the EpoR in Epo-stimulated cells. By this approach, association also occurred with the mitogenically active H mutant but not with the mitogenically inactive PB or PM4 mutants. In the immune complex kinases assays, EpoR, JAK2, and a 150-kD protein were phosphorylated on tyrosine. Taken together, the results further support the hypothesis that, on Epo stimulation, JAK2 associates with the membrane-proximal cytoplasmic region of the EpoR to be activated and induces tyrosine phosphorylation of cellular substrates, including the EpoR, to transduce a growth signal.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 664
Author(s):  
Allimuthu Elangovan ◽  
Monika Dalal ◽  
Gopinathan Kumar Krishna ◽  
Sellathdurai Devika ◽  
Ranjeet Ranjan Kumar ◽  
...  

Tyrosine phosphorylation constitutes up to 5% of the total phophoproteome. However, only limited studies are available on protein tyrosine kinases (PTKs) that catalyze protein tyrosine phosphorylation in plants. In this study, domain analysis of the 27 annotated PTK genes in rice genome led to the identification of 18 PTKs with tyrosine kinase domain. The kinase domain of rice PTKs shared high homology with that of dual specificity kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) of Arabidopsis. In phylogenetic analysis, rice PTKs clustered with receptor-like cytoplasmic kinases-VII (RLCKs-VII) of Arabidopsis. mRNAseq analysis using Genevestigator revealed that rice PTKs except PTK9 and PTK16 express at moderate to high level in most tissues. PTK16 expression was highly abundant in panicle at flowering stage. mRNAseq data analysis led to the identification of drought, heat, salt, and submergence stress regulated PTK genes in rice. PTK14 was upregulated under all stresses. qRT-PCR analysis also showed that all PTKs except PTK10 were significantly upregulated in root under osmotic stress. Tissue specificity and abiotic stress mediated differential regulation of PTKs suggest their potential role in development and stress response of rice. The candidate dual specificity PTKs identified in this study paves way for molecular analysis of tyrosine phosphorylation in rice.


2016 ◽  
Vol 12 ◽  
pp. P144-P144
Author(s):  
Zhizhen Zeng ◽  
Patricia J. Miller ◽  
Brett M. Connolly ◽  
Stacey S. O’Malley ◽  
Idriss Bennacef ◽  
...  

2020 ◽  
Vol 21 (7) ◽  
pp. 2400 ◽  
Author(s):  
René Stürmer ◽  
Jana Reising ◽  
Werner Hoffmann

The skin of the frog Xenopus laeevis is protected from microbial infections by a mucus barrier that contains frog integumentary mucins (FIM)-A.1, FIM-B.1, and FIM-C.1. These gel-forming mucins are synthesized in mucous glands consisting of ordinary mucous cells and one or more cone cells at the gland base. FIM-A.1 and FIM-C.1 are unique because their cysteine-rich domains belong to the trefoil factor family (TFF). Furthermore, FIM-A.1 is unusually short (about 400 amino acid residues). In contrast, FIM-B.1 contains cysteine-rich von Willebrand D (vWD) domains. Here, we separate skin extracts by the use of size exclusion chromatography and analyze the distribution of FIM-A.1 and FIM-C.1. Two mucin complexes were detected, i.e., a high-molecular-mass Complex I, which contains FIM-C.1 and little FIM-A.1, whereas Complex II is of lower molecular mass and contains the bulk of FIM-A.1. We purified FIM-A.1 by a combination of size-exclusion chromatography (SEC) and anion-exchange chromatography and performed first in vitro binding studies with radioactively labeled FIM-A.1. Binding of 125I-labeled FIM-A.1 to the high-molecular-mass Complex I was observed. We hypothesize that the presence of FIM-A.1 in Complex I is likely due to lectin interactions, e.g., with FIM-C.1, creating a complex mucus network.


Sign in / Sign up

Export Citation Format

Share Document