Constitutive Activation of STATs Upon In Vivo Human Immunodeficiency Virus Infection

Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4202-4209 ◽  
Author(s):  
Chiara Bovolenta ◽  
Laura Camorali ◽  
Alessandro L. Lorini ◽  
Silvia Ghezzi ◽  
Elisa Vicenzi ◽  
...  

Abstract Infection by the human immunodeficiency virus (HIV) either upregulates or downregulates the expression of several cytokines and interferons (IFNs) that use the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway for signal transduction. However, very little is known on the state of activation of the JAK/STAT pathway after HIV infection either in vivo or in vitro. In this regard, we report here that a constitutive activation of a C-terminal truncated STAT5 (STAT5▵) and of STAT1 occurs in the majority (∼75%) of individuals with progressive HIV disease. We have further demonstrated that, among peripheral blood mononuclear cells (PBMCs), STAT5▵ is activated preferentially in CD4+ T cells. In contrast to a published report, expression of STATs from PBMCs of infected individuals was comparable with that of seronegative donors. In addition, in vitro infection of mitogen-activated PBMCs with a panel of laboratory-adapted and primary HIV strains characterized by differential usage of chemokine coreceptors did not affect STAT protein levels. However, enhanced activation of STAT was observed after in vitro infection of resting PBMCs and nonadherent PBMCs by different viral strains. Thus, constitutive STAT activation in CD4+T lymphocytes represents a novel finding of interest also as a potential new marker of immunological reconstitution of HIV-infected individuals.

Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4202-4209 ◽  
Author(s):  
Chiara Bovolenta ◽  
Laura Camorali ◽  
Alessandro L. Lorini ◽  
Silvia Ghezzi ◽  
Elisa Vicenzi ◽  
...  

Infection by the human immunodeficiency virus (HIV) either upregulates or downregulates the expression of several cytokines and interferons (IFNs) that use the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway for signal transduction. However, very little is known on the state of activation of the JAK/STAT pathway after HIV infection either in vivo or in vitro. In this regard, we report here that a constitutive activation of a C-terminal truncated STAT5 (STAT5▵) and of STAT1 occurs in the majority (∼75%) of individuals with progressive HIV disease. We have further demonstrated that, among peripheral blood mononuclear cells (PBMCs), STAT5▵ is activated preferentially in CD4+ T cells. In contrast to a published report, expression of STATs from PBMCs of infected individuals was comparable with that of seronegative donors. In addition, in vitro infection of mitogen-activated PBMCs with a panel of laboratory-adapted and primary HIV strains characterized by differential usage of chemokine coreceptors did not affect STAT protein levels. However, enhanced activation of STAT was observed after in vitro infection of resting PBMCs and nonadherent PBMCs by different viral strains. Thus, constitutive STAT activation in CD4+T lymphocytes represents a novel finding of interest also as a potential new marker of immunological reconstitution of HIV-infected individuals.


2006 ◽  
Vol 80 (21) ◽  
pp. 10663-10674 ◽  
Author(s):  
Andrea Crotti ◽  
Francesca Neri ◽  
Davide Corti ◽  
Silvia Ghezzi ◽  
Silvia Heltai ◽  
...  

ABSTRACT Infection with human immunodeficiency virus (HIV)-encoding defective nef variants may contribute to a relatively benign course of disease in a minority of long-term nonprogressors (LTNP). We have examined the functions of nef alleles from six individuals belonging to the same cohort of hemophiliacs infected with HIV-1 prior to 1985 and classified as LTNP in 1995. Three out of six individuals have progressed to HIV disease (late progressors [LP]), whereas the three remainders have maintained their LTNP status at least up to 2003. The nef alleles were obtained from both plasma virus and peripheral blood mononuclear cells of all six individuals in 1995 and 1998. The proportion of sequences containing mutations not yielding Nef expression significantly diminished in 1998 versus that in 1995. Several previously defined functional regions of intact nef alleles were highly conserved. However, the major variant obtained in 1998 from plasma RNA of five out of six individuals significantly reduced HIV infectivity/replication and impaired Nef-mediated CD4 but not major histocompatibility complex class I antigen down-modulation from the cell surface. Thus, functional alterations of the nef gene are present in both LP and LTNP, suggesting that Nef defectiveness in vitro is not necessarily associated with the long-term maintenance of LTNP status. Of interest is the fact that isolates from three out of three LP showed a dual CCR5/CXCR4 coreceptor use (R5X4), in contrast to those from LTNP, which were exclusively R5. Thus, in vivo evolution of gp120 Env to CXCR4 use appears to be associated with HIV disease progression in individuals infected with nef-defective viruses.


2000 ◽  
Vol 74 (18) ◽  
pp. 8550-8557 ◽  
Author(s):  
Gene G. Olinger ◽  
Mohammed Saifuddin ◽  
Gregory T. Spear

ABSTRACT The ability of human immunodeficiency virus strain MN (HIVMN), a T-cell line-adapted strain of HIV, and X4 and R5 primary isolates to bind to various cell types was investigated. In general, HIVMN bound to cells at higher levels than did the primary isolates. Virus bound to both CD4-positive (CD4+) and CD4-negative (CD4−) cells, including neutrophils, Raji cells, tonsil mononuclear cells, erythrocytes, platelets, and peripheral blood mononuclear cells (PBMC), although virus bound at significantly higher levels to PBMC. However, there was no difference in the amount of HIV that bound to CD4-enriched or CD4-depleted PBMC. Virus bound to CD4− cells was up to 17 times more infectious for T cells in cocultures than was the same amount of cell-free virus. Virus bound to nucleated cells was significantly more infectious than virus bound to erythrocytes or platelets. The enhanced infection of T cells by virus bound to CD4− cells was not due to stimulatory signals provided by CD4− cells or infection of CD4− cells. However, anti-CD18 antibody substantially reduced the enhanced virus replication in T cells, suggesting that virus that bound to the surface of CD4−cells is efficiently passed to CD4+ T cells during cell-cell adhesion. These studies show that HIV binds at relatively high levels to CD4− cells and, once bound, is highly infectious for T cells. This suggests that virus binding to the surface of CD4− cells is an important route for infection of T cells in vivo.


1996 ◽  
Vol 40 (5) ◽  
pp. 1072-1077 ◽  
Author(s):  
C G Bridges ◽  
D L Taylor ◽  
P S Ahmed ◽  
T M Brennan ◽  
J M Hornsperger ◽  
...  

The novel acyclonucleotide derivative of guanine, 9-[2-methylidene-3-(phosphonomethoxy)propyl] guanine (MDL 74,968), had antiviral activity comparable to those of 9-(2-phosphonomethoxyethyl) adenine (PMEA) and 2',3'-dideoxyinosine against laboratory strains of both human immunodeficiency virus (HIV) types 1 and 2 cultured in MT-4 cells and several clinical HIV isolates cultured in human peripheral blood mononuclear cells (PBMCs). MDL 74,968 was at least fourfold less toxic than PMEA to MT-4 cells or PBMCs, thereby producing a more favorable in vitro selectivity index for the former compound. Studies of acute toxicity in CD-1 mice showed that MDL 74,968 was not toxic at doses of 1,600 mg/kg of body weight via the intraperitoneal route or at doses of 500 mg/kg via the intravenous route. Furthermore, no adverse effects of MDL 74,968 were apparent when mice were treated at doses of 200 mg/kg twice daily for 5 days. Treatment by continuous subcutaneous infusion of MDL 74,968 or PMEA at the daily dose of 20 mg/kg in the hu-PBL-SCID.beige murine model of HIV infection significantly reduced the severity of infection compared with that in placebo-treated controls. Quantitation of virus recovery by endpoint titration of spleen cells in coculture with mitogen-activated PBMCs demonstrated that MDL 74,968 as well as PMEA significantly reduced the amount of virus (P < 0.02). Moreover, by using DNA extracted from spleens, the mean HIV:HLA PCR product ratio, which takes into account individual variation in immune system reconstitution, were 0.50 and 0.40 for MDL 74,968 and PMEA treatments, respectively, whereas animals receiving the placebo control had significantly higher levels of HIV proviral DNA (mean 0.78; P < 0.02). Taken together, these promising findings suggest that an orally bioavailable prodrug of MDL 74,968 should be developed for the treatment of HIV infection.


2015 ◽  
Vol 90 (5) ◽  
pp. 2316-2331 ◽  
Author(s):  
Nadeene E. Riddick ◽  
Fan Wu ◽  
Kenta Matsuda ◽  
Sonya Whitted ◽  
Ilnour Ourmanov ◽  
...  

ABSTRACTAfrican green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIVin vivo, while human-derived CXCR6 and GPR15 also appear to be usedin vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptorsin vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4+T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4+T cells and are potential alternative coreceptors for SIVagm usein vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals.IMPORTANCEAfrican green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cellsin vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptorsin vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entryin vitroand may serve as entry coreceptors for SIVagmin vivo, since their mRNAs were detected in AGM memory CD4+T cells, the preferred target cells of SIV.


2007 ◽  
Vol 52 (2) ◽  
pp. 655-665 ◽  
Author(s):  
Tomas Cihlar ◽  
Adrian S. Ray ◽  
Constantine G. Boojamra ◽  
Lijun Zhang ◽  
Hon Hui ◽  
...  

ABSTRACT GS-9148 [(5-(6-amino-purin-9-yl)-4-fluoro-2,5-dihydro-furan-2-yloxymethyl)phosphonic acid] is a novel ribose-modified human immunodeficiency virus type 1 (HIV-1) nucleotide reverse transcriptase (RT) inhibitor (NRTI) selected from a series of nucleoside phosphonate analogs for its favorable in vitro biological properties including (i) a low potential for mitochondrial toxicity, (ii) a minimal cytotoxicity in renal proximal tubule cells and other cell types, (iii) synergy in combination with other antiretrovirals, and (iv) a unique resistance profile against multiple NRTI-resistant HIV-1 strains. Notably, antiviral resistance analysis indicated that neither the K65R, L74V, or M184V RT mutation nor their combinations had any effect on the antiretroviral activity of GS-9148. Viruses carrying four or more thymidine analog mutations showed a substantially smaller change in GS-9148 activity relative to that observed with most marketed NRTIs. GS-9131, an ethylalaninyl phosphonoamidate prodrug designed to maximize the intracellular delivery of GS-9148, is a potent inhibitor of multiple subtypes of HIV-1 clinical isolates, with a mean 50% effective concentration of 37 nM. Inside cells, GS-9131 is readily hydrolyzed to GS-9148, which is further phosphorylated to its active diphosphate metabolite (A. S. Ray, J. E. Vela, C. G. Boojamra, L. Zhang, H. Hui, C. Callebaut, K. Stray, K.-Y. Lin, Y. Gao, R. L. Mackman, and T. Cihlar, Antimicrob. Agents Chemother. 52:648-654, 2008). GS-9148 diphosphate acts as a competitive inhibitor of RT with respect to dATP (Ki = 0.8 μM) and exhibits low inhibitory potency against host polymerases including DNA polymerase γ. Oral administration of GS-9131 to beagle dogs at a dose of 3 mg/kg of body weight resulted in high and persistent levels of GS-9148 diphosphate in peripheral blood mononuclear cells (with a maximum intracellular concentration of >9 μM and a half-life of >24 h). This favorable preclinical profile makes GS-9131 an attractive clinical development candidate for the treatment of patients infected with NRTI-resistant HIV.


2001 ◽  
Vol 75 (6) ◽  
pp. 2776-2785 ◽  
Author(s):  
Yongjun Guan ◽  
James B. Whitney ◽  
Chen Liang ◽  
Mark A. Wainberg

ABSTRACT We have constructed a series of simian immunodeficiency virus (SIV) mutants containing deletions within a 97-nucleotide (nt) region of the leader sequence. Deletions in this region markedly decreased the replication capacity in tissue culture, i.e., in both the C8166 and CEMx174 cell lines, as well as in rhesus macaque peripheral blood mononuclear cells. In addition, these deletions adversely affected the packaging of viral genomic RNA into virions, the processing of Gag precursor proteins, and patterns of viral proteins in virions, as assessed by biochemical labeling and polyacrylamide gel electrophoresis. Different levels of attenuation were achieved by varying the size and position of deletions within this 97-nt region, and among a series of constructs that were generated, it was possible to rank in vitro virulence relative to that of wild-type virus. In all of these cases, the most severe impact on viral replication was observed when the deletions that were made were located at the 3′ rather than 5′ end of the leader region. The potential of viral reversion over protracted periods was investigated by repeated viral passage in CEMx174 cells. The results showed that several of these constructs showed no signs of reversion after more than 6 months in tissue culture. Thus, a series of novel, attenuated SIV constructs have been developed that are significantly impaired in replication capacity yet retain all viral genes. One of these viruses, termed SD4, may be appropriate for study with rhesus macaques, in order to determine whether reversions will occur in vivo and to further study this virus as a candidate for attenuated vaccination.


2005 ◽  
Vol 79 (11) ◽  
pp. 6848-6858 ◽  
Author(s):  
C. Barassi ◽  
E. Soprana ◽  
C. Pastori ◽  
R. Longhi ◽  
E. Buratti ◽  
...  

ABSTRACT The genital mucosa is the main site of initial human immunodeficiency virus type 1 (HIV-1) contact with its host. In spite of repeated sexual exposure, some individuals remain seronegative, and a small fraction of them produce immunoglobulin G (IgG) and IgA autoantibodies directed against CCR5, which is probably the cause of the CCR5-minus phenotype observed in the peripheral blood mononuclear cells of these subjects. These antibodies recognize the 89-to-102 extracellular loop of CCR5 in its native conformation. The aim of this study was to induce infection-preventing mucosal anti-CCR5 autoantibodies in individuals at high risk of HIV infection. Thus, we generated chimeric immunogens containing the relevant CCR5 peptide in the context of the capsid protein of Flock House virus, a presentation system in which it is possible to engineer conformationally constrained peptide in a highly immunogenic form. Administered in mice via the systemic or mucosal route, the immunogens elicited anti-CCR5 IgG and IgA (in sera and vaginal fluids). Analogous to exposed seronegative individuals, mice producing anti-CCR5 autoantibodies express significantly reduced levels of CCR5 on the surfaces of CD4+ cells from peripheral blood and vaginal washes. In vitro studies have shown that murine IgG and IgA (i) specifically bind human and mouse CD4+ lymphocytes and the CCR5-transfected U87 cell line, (ii) down-regulate CCR5 expression of CD4+ cells from both humans and untreated mice, (iii) inhibit Mip-1β chemotaxis of CD4+ CCR5+ lymphocytes, and (iv) neutralize HIV R5 strains. These data suggest that immune strategies aimed at generating anti-CCR5 antibodies at the level of the genital mucosa might be feasible and represent a strategy to induce mucosal HIV-protective immunity.


2008 ◽  
Vol 82 (11) ◽  
pp. 5548-5561 ◽  
Author(s):  
Brandon F. Keele ◽  
Loubna Tazi ◽  
Suzanne Gartner ◽  
Yiling Liu ◽  
Trever B. Burgon ◽  
...  

ABSTRACT Throughout the natural course of human immunodeficiency virus (HIV) infection, follicular dendritic cells (FDCs) trap and retain large quantities of particle-associated HIV RNA in the follicles of secondary lymphoid tissue. We have previously found that murine FDCs in vivo could maintain trapped virus particles in an infectious state for at least 9 months. Here we sought to determine whether human FDCs serve as an HIV reservoir, based on the criteria that virus therein must be replication competent, genetically diverse, and archival in nature. We tested our hypothesis using postmortem cells and tissues obtained from three HIV-infected subjects and antemortem blood samples obtained from one of these subjects. Replication competence was determined using coculture, while genetic diversity and the archival nature of virus were established using phylogenetic and population genetics methods. We found that FDC-trapped virus was replication competent and demonstrated greater genetic diversity than that of virus found in most other tissues and cells. Antiretrovirus-resistant variants that were not present elsewhere were also detected on FDCs. Furthermore, genetic similarity was observed between FDC-trapped HIV and viral species recovered from peripheral blood mononuclear cells obtained 21 and 22 months antemortem, but was not present in samples obtained 4 and 18 months prior to the patient's death, indicating that FDCs can archive HIV. These data indicate that FDCs represent a significant reservoir of infectious and diverse HIV, thereby providing a mechanism for viral persistence for months to years.


Sign in / Sign up

Export Citation Format

Share Document