Inhibition of in vitro spontaneous apoptosis by IL-7 correlates with Bcl-2 up-regulation, cortical/mature immunophenotype, and better early cytoreduction of childhood T-cell acute lymphoblastic leukemia

Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 297-306 ◽  
Author(s):  
Leonid Karawajew ◽  
Velia Ruppert ◽  
Christian Wuchter ◽  
Annett Kösser ◽  
Martin Schrappe ◽  
...  

Abstract In normal T-cell development, IL-7 plays a nonredundant role as an antiapoptic factor by regulating Bcl-2 expression in pro-T cells. In the current study, we addressed the roles of IL-7 and related cytokines as apoptosis-modulating factors in precursor T-cell acute lymphoblastic leukemia (T-ALL). To this end, leukemic blasts from pediatric patients with T-ALL were prospectively investigated as to their responsiveness to IL-7, IL-4, and IL-2 (in terms of modulation of spontaneous apoptosis, assessed by flow cytometry), cytokine receptor expression profiles, and expression levels of Bcl-2 and Bax proteins. IL-7, in contrast to IL-4 and IL-2, was highly efficient in apoptosis inhibition , and this effect correlated with the expression levels of IL-7R chain and with the up-regulation of Bcl-2 protein expression (P< .0001). Subclassification of T-ALL samples (n = 130) according to their in vitro IL-7 responses revealed that IL-7 refractory samples were more frequently positive for CD34 (P< .0001) and the myeloid-associated antigen CD33 (P= .01), whereas IL-7 responsiveness was associated with an expression of more mature differentiation-associated T-cell antigens (CD1a, surface CD3, CD4/8; P < .05). Furthermore, the extent of apoptosis inhibition by IL-7 in vitro quantitatively correlated with early cytoreduction as determined by the prednisone peripheral blood response on day 8 and cytoreduction in the marrow on day 15 (n = 87;P < .05). Multivariate analysis of the apoptosis-related parameters investigated, including spontaneous apoptosis, its inhibition by IL-7, and expression levels of Bcl-2 and Bax, showed that only IL-7 responsiveness has an independent impact on early cytoreduction (P < .05), thus indicating a potential prognostic relevance of IL-7 sensitivity in T-ALL.

Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 297-306 ◽  
Author(s):  
Leonid Karawajew ◽  
Velia Ruppert ◽  
Christian Wuchter ◽  
Annett Kösser ◽  
Martin Schrappe ◽  
...  

In normal T-cell development, IL-7 plays a nonredundant role as an antiapoptic factor by regulating Bcl-2 expression in pro-T cells. In the current study, we addressed the roles of IL-7 and related cytokines as apoptosis-modulating factors in precursor T-cell acute lymphoblastic leukemia (T-ALL). To this end, leukemic blasts from pediatric patients with T-ALL were prospectively investigated as to their responsiveness to IL-7, IL-4, and IL-2 (in terms of modulation of spontaneous apoptosis, assessed by flow cytometry), cytokine receptor expression profiles, and expression levels of Bcl-2 and Bax proteins. IL-7, in contrast to IL-4 and IL-2, was highly efficient in apoptosis inhibition , and this effect correlated with the expression levels of IL-7R chain and with the up-regulation of Bcl-2 protein expression (P< .0001). Subclassification of T-ALL samples (n = 130) according to their in vitro IL-7 responses revealed that IL-7 refractory samples were more frequently positive for CD34 (P< .0001) and the myeloid-associated antigen CD33 (P= .01), whereas IL-7 responsiveness was associated with an expression of more mature differentiation-associated T-cell antigens (CD1a, surface CD3, CD4/8; P < .05). Furthermore, the extent of apoptosis inhibition by IL-7 in vitro quantitatively correlated with early cytoreduction as determined by the prednisone peripheral blood response on day 8 and cytoreduction in the marrow on day 15 (n = 87;P < .05). Multivariate analysis of the apoptosis-related parameters investigated, including spontaneous apoptosis, its inhibition by IL-7, and expression levels of Bcl-2 and Bax, showed that only IL-7 responsiveness has an independent impact on early cytoreduction (P < .05), thus indicating a potential prognostic relevance of IL-7 sensitivity in T-ALL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5197-5197
Author(s):  
Niroshaathevi Arumuggam ◽  
Nicole Melong ◽  
Catherine K.L. Too ◽  
Jason N. Berman ◽  
H.P. Vasantha Rupasinghe

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant disease that accounts for about 15% of pediatric and 25% of adult ALL. Although risk stratification has provided more tailored therapy and improved the overall survival of T-ALL patients, clinical challenges such as suboptimal drug responses, morbidity from drug toxicities, and drug resistance still exist. Plant polyphenols have therapeutic efficacy as pharmacological adjuvants to help overcome these challenges. They can be acylated with fatty acids to overcome issues concerning bioavailability, such as poor intestinal absorption and low metabolic stability. Phloridzin (PZ), a flavonoid found in apple peels, was acylated with an omega-3 fatty acid, docosahexaenoic acid (DHA), to generate a novel ester called phloridzin docosahexaenoate (PZ-DHA). The cytotoxic effect of PZ-DHA was studied in the human Jurkat T-ALL cell line. PZ-DHA significantly reduced the viability and cellular ATP levels of treated cells. PZ-DHA was found to selectively induce apoptosis in Jurkat cells, while sparing normal murine T-cells. Apoptosis was further confirmed by demonstrating the ability of PZ-DHA to induce morphological alterations, DNA fragmentation, caspase activation, and the release of intracellular lactate dehydrogenase. PZ-DHA also significantly inhibited cell division in Jurkat cells. Furthermore, interferon-α-induced phosphorylation of the transcription factor, STAT3, was downregulated following PZ-DHA treatment. The in vitro efficacy of PZ-DHA was recapitulated in vivo in an established zebrafish xenograft model, where the proliferation of transplanted Jurkat cells was inhibited when PZ-DHA was added to the embryo water. Overall, these findings provide evidence for PZ-DHA as a novel therapeutic agent with activity in T-ALL. Studies examining the effect of PZ-DHA on patient-derived ALL cells engrafted in zebrafish are currently underway. Disclosures No relevant conflicts of interest to declare.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1726
Author(s):  
Valentina Saccomani ◽  
Angela Grassi ◽  
Erich Piovan ◽  
Deborah Bongiovanni ◽  
Ludovica Di Martino ◽  
...  

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Blood ◽  
2019 ◽  
Vol 133 (21) ◽  
pp. 2291-2304 ◽  
Author(s):  
Diego Sánchez-Martínez ◽  
Matteo L. Baroni ◽  
Francisco Gutierrez-Agüera ◽  
Heleia Roca-Ho ◽  
Oscar Blanch-Lombarte ◽  
...  

Abstract Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient–derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


2017 ◽  
Vol 405 ◽  
pp. 73-78 ◽  
Author(s):  
Sausan A. Moharram ◽  
Kinjal Shah ◽  
Fatima Khanum ◽  
Alissa Marhäll ◽  
Mohiuddin Gazi ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2038-2038
Author(s):  
Irene Homminga ◽  
Michel C. Zwaan ◽  
Amel Seghouani ◽  
Chantal Y. Manz ◽  
Shanta Bantia ◽  
...  

Abstract Abstract 2038 Poster Board II-15 Purine nucleoside phosphorylase (PNP) deficiency in humans is associated with elevated deoxyguanosine (dGuo) plasma levels. DGuo is converted into dGTP inducing apoptosis in T-cells and this provides the rationale for the development of deoxyguanosine analogues as a potential treatment option for T-cell malignancies. Forodesine (BCX-1777; BioCryst-Mundipharma) is an efficient blocker of PNP activity, thereby boosting the conversion of dGuo into dGTP and raising intracellular dGTP levels. AraG (9-b-D-arabinofuranosyl-guanine) is a compound that is resistant to PNP-mediated degradation that is efficiently converted into AraGTP. AraGTP becomes incorporated in the DNA, blocking DNA synthesis and promoting apoptosis. In a phase II clinical trial, the AraG prodrug Nelarabine enforced a complete remission rate of 55% for pediatric T-ALL patients at 1st relapse. (Berg, JCO 2005). Clinical data of Forodesine treatment in pediatric ALL patients are not yet available. As tested on primary pediatric acute lymphoblastic leukemia (ALL) patient samples (4 T-ALL, 2 BCP-ALL), 1μM of Forodesine is sufficient to completely block PNP and abolish rapid dGuo degradation resulting in a median 7.9 (range 0.5-378) fold raise of intracellular dGTP levels. Accumulation of dGTP is comparable for T-ALL (n=31) and BCP-ALL (n=11) patient samples. This reflects equal intrinsic ability of salvage nucleotide synthesis for both T-ALL and BCP-ALL cells. Cytotoxic effect of Forodesine was tested on primary leukemia cells from newly diagnosed pediatric ALL patients in-vitro by incubating cells with Forodesine (1μM) in the presence of increasing concentrations of dGuo (0.001-50μM). In accordance with selective T-cell toxicity, T-ALL cells were more sensitive to Forodesine/dGuo treatment (median T-ALL LC50 value: 1.1μM dGuo/1μM Forodesine, n=27, p=0.001) compared to BCP-ALL cells, which had a median LC50 value of 8.8μM dGuo/1μM Forodesine (n=30). All patients that responded demonstrated dGTP accumulation (1.5-222.1 fold), although the raise of dGTP levels did not correlate with Forodesine/dGuo toxicity (r2= 0.10, p=0.22). Studying in-vitro responsiveness to AraG, T-ALL cells were more sensitive compared to BCP-ALL cells (p=0.0002) with a median AraG LC50 value of 20.5μM for T-ALL samples (n=24) versus 48.3μM for BCP-ALL samples (n=20). Remarkably, TELAML1 positive BCP-ALL cases were insensitive to AraG treatment (median LC50 value >50μM, n=9). No correlation was identified between in-vitro Forodesine/dGuo and AraG cytotoxicities (r2=0.05, p=0.29). Most patient samples that displayed AraG resistance still responded to Forodesine/dGuo treatment. This may be explained by the fact that the uptake of both drugs may be facilitated by different transporters. Using RQ-PCR we could demonstrate that AraG toxicity, in contrast to Forodesine, was significantly associated with ENT1 (equilibrative nucleoside transporter 1) expression levels (p=0.008), which was previously identified as strong predictor for AraC cytotoxicity in pediatric ALL (Stam RW. et al., Blood 2003). AraG cytotoxicity strongly correlated with AraC cytotoxicity (r2=0.71, p<0.0001). We found no significant correlation between Forodesine sensitivity and the expression levels of other nucleoside transporters (CNT1, CNT2, CNT3, ENT2), kinases (dCK, dGK), nucleotidases (NT5C1A, NT5C2, PNI) or other enzymes that are involved in dGuo metabolism (PNP, RRM1, RRM2). In conclusion, T-ALL cells are more sensitive to Forodesine/dGuo treatment in-vitro than BCP-ALL cells that have nearly 8 fold higher dGuo LC50 values. Resistance to AraG treatment does not preclude responsiveness to Forodesine treatment and vice versa, indicating that Forodesine and AraG rely on different cellular mechanisms for cytotoxicity, possibly involving differences in dependence on the nucleoside transporter ENT1. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2535-2535
Author(s):  
Marc R. Mansour ◽  
Casie Reed ◽  
Amy Eisenberg ◽  
Jen-Chieh Tseng ◽  
Akinori Yoda ◽  
...  

Abstract Activating mutations of the interleukin-7 receptor (IL7R) occur in approximately 10% of patients with T-cell acute lymphoblastic leukemia. Most mutations generate a cysteine at the transmembrane domain leading to receptor homodimerization through disulfide bond formation and ligand-independent activation of STAT5. We hypothesized that the reducing agent N-acetylcysteine (NAC), a well-tolerated drug used widely in clinical practice to treat acetaminophen overdose, would disrupt disulfide bond formation, and inhibit mutant IL7R-mediated oncogenic signaling. To first identify a suitable cell model to study mutant IL7R signaling, we sequenced exon 6 of IL7R in 21 T-ALL cell lines. We identified a 4-amino-acid insertion (p.L242_L243insLSRC) in DND-41 cells which is predicted to form IL7R homodimers through disulfide bond formation with the unpaired cysteine of neighboring mutant IL7Rs. We found that treatment with NAC at clinically achievable concentrations disrupted IL7R homodimerization in IL7R-mutant DND-41 cells in vitro (IC50 approximately 150 micromolar) and led to STAT5 dephosphorylation and cell apoptosis. These effects could be rescued in part by a constitutively active allele of STAT5, indicating the mechanism of NAC is mediated predominantly through disruption of IL7R-STAT5 signaling in these cells. In a murine xenograft model of T-ALL, intraperitoneal NAC treatment led to significant inhibition of tumor progression, indicating NAC has activity in vivo. Previous studies of NAC pharmacokinetics in humans have shown steady state plasma levels range from 200 to 900 micromolar when given on standard treatment regimens for acetaminophen overdose, well within the therapeutic range required to kill DND-41 cells in vitro. Targeting leukemogenic IL7R homodimerization with NAC offers a potentially effective, cheap and feasible therapeutic strategy that warrants testing in clinical trials. Disclosures: Rodig: Daiichi-Sankyo/Arqule Inc., Ventana/Roche Inc., Shape Pharmaceuticals Inc.: Consultancy; Ventana/Roche Inc.: Research Funding.


2019 ◽  
Author(s):  
Kirsti L. Walker ◽  
Sabrina A. Kabakov ◽  
Fen Zhu ◽  
Myriam N. Bouchlaka ◽  
Sydney L Olson ◽  
...  

AbstractRelapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) is difficult to salvage especially in heavily pretreated patients, thus novel targeted agents are sorely needed. Hyperactivated JAK/STAT and BCL2 overexpression promote increased T-ALL proliferation and survival, and targeting these pathways with ruxolitinib and venetoclax may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dose-dependent effect individually, but combination treatment synergistically reduces survival and proliferation of Jurkat and Loucy cells in vitro. Using a xenograft CXCR4+ Jurkat model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite on-target inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS), which expresses CXCL12, as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that neither ruxolitinib nor venetoclax can effectively cross the blood-brain barrier, limiting efficacy against CNS T-ALL. Deletion of CXCR4 on Jurkat cells by CRISPR/Cas9 results in prolonged survival and a reduction in overall and neurologic clinical scores. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis will be needed to eliminate both systemic and CNS T-ALL burden and maximize the possibility of complete remission.


Sign in / Sign up

Export Citation Format

Share Document