Highly efficient gene transfer in naive human T cells with a murine leukemia virus-based vector

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 885-893 ◽  
Author(s):  
Valérie Dardalhon ◽  
Sara Jaleco ◽  
Cosette Rebouissou ◽  
Christophe Ferrand ◽  
Nadia Skander ◽  
...  

Abstract Retroviral vectors based on the Moloney murine leukemia virus (MuLV) have become the primary tool for gene delivery into hematopoietic cells, but clinical trials have been hampered by low transduction efficiencies. Recently, we and others have shown that gene transfer of MuLV-based vectors into T cells can be significantly augmented using a fibronectin-facilitated protocol. Nevertheless, the relative abilities of naive (CD45RA+) and memory (CD45RO+) lymphocyte subsets to be transduced has not been assessed. Although naive T cells demonstrate a restricted cytokine profile following antigen stimulation and a decreased susceptibility to infection with human immunodeficiency virus, it was not clear whether they could be efficiently infected with a MuLV vector. This study describes conditions that permitted gene transfer of an enhanced green fluorescent protein-expressing retroviral vector in more than 50% of naive umbilical cord (UC) blood and peripheral blood (PB) T cells following CD3/CD28 ligation. Moreover, treatment of naive T cells with interleukin-7 resulted in the maintenance of a CD45RA phenotype and gene transfer levels approached 20%. Finally, it was determined that parameters for optimal transduction of CD45RA+ T cells isolated from PB and UC blood differed: transduction of the UC cells was significantly increased by the presence of autologous mononuclear cells (24.5% versus 56.5%). Because naive T cells harbor a receptor repertoire that allows them to respond to novel antigens, the development of protocols targeting their transduction is crucial for gene therapy applications. This approach will also allow the functions of exogenous genes to be evaluated in primary nontransformed naive T cells.

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 885-893 ◽  
Author(s):  
Valérie Dardalhon ◽  
Sara Jaleco ◽  
Cosette Rebouissou ◽  
Christophe Ferrand ◽  
Nadia Skander ◽  
...  

Retroviral vectors based on the Moloney murine leukemia virus (MuLV) have become the primary tool for gene delivery into hematopoietic cells, but clinical trials have been hampered by low transduction efficiencies. Recently, we and others have shown that gene transfer of MuLV-based vectors into T cells can be significantly augmented using a fibronectin-facilitated protocol. Nevertheless, the relative abilities of naive (CD45RA+) and memory (CD45RO+) lymphocyte subsets to be transduced has not been assessed. Although naive T cells demonstrate a restricted cytokine profile following antigen stimulation and a decreased susceptibility to infection with human immunodeficiency virus, it was not clear whether they could be efficiently infected with a MuLV vector. This study describes conditions that permitted gene transfer of an enhanced green fluorescent protein-expressing retroviral vector in more than 50% of naive umbilical cord (UC) blood and peripheral blood (PB) T cells following CD3/CD28 ligation. Moreover, treatment of naive T cells with interleukin-7 resulted in the maintenance of a CD45RA phenotype and gene transfer levels approached 20%. Finally, it was determined that parameters for optimal transduction of CD45RA+ T cells isolated from PB and UC blood differed: transduction of the UC cells was significantly increased by the presence of autologous mononuclear cells (24.5% versus 56.5%). Because naive T cells harbor a receptor repertoire that allows them to respond to novel antigens, the development of protocols targeting their transduction is crucial for gene therapy applications. This approach will also allow the functions of exogenous genes to be evaluated in primary nontransformed naive T cells.


2013 ◽  
Vol 87 (23) ◽  
pp. 12721-12736 ◽  
Author(s):  
Saumya Shree Gupta ◽  
Tobias Maetzig ◽  
Goedele N. Maertens ◽  
Azar Sharif ◽  
Michael Rothe ◽  
...  

Retroviral integrase (IN) proteins catalyze the permanent integration of proviral genomes into host DNA with the help of cellular cofactors. Lens epithelium-derived growth factor (LEDGF) is a cofactor for lentiviruses, including human immunodeficiency virus type 1 (HIV-1), and targets lentiviral integration toward active transcription units in the host genome. In contrast to lentiviruses, murine leukemia virus (MLV), a gammaretrovirus, tends to integrate near transcription start sites. Here, we show that the bromodomain and extraterminal domain (BET) proteins BRD2, BRD3, and BRD4 interact with gammaretroviral INs and stimulate the catalytic activity of MLV INin vitro. We mapped the interaction site to a characteristic structural feature within the BET protein extraterminal (ET) domain and to three amino acids in MLV IN. The ET domains of different BET proteins stimulate MLV integrationin vitroand, in the case of BRD2, alsoin vivo. Furthermore, two small-molecule BET inhibitors, JQ1 and I-BET, decrease MLV integration and shift it away from transcription start sites. Our data suggest that BET proteins might act as chromatin-bound acceptors for the MLV preintegration complex. These results could pave a way to redirecting MLV DNA integration as a basis for creating safer retroviral vectors.


2001 ◽  
Vol 75 (23) ◽  
pp. 11464-11473 ◽  
Author(s):  
Linda Bruett ◽  
Janice E. Clements

ABSTRACT Pseudotype virus vectors serve as a powerful tool for the study of virus receptor usage and entry. We describe the development of murine leukemia virus (MuLV) particles pseudotyped with the visna virus envelope glycoprotein and encoding a green fluorescent protein reporter as a tool to study the expression of the visna virus receptor. Functional MuLV/visna virus pseudotypes were obtained when the cytoplasmic tail of the visna virus envelope TM protein was truncated to 3, 7, or 11 amino acids in length. MuLV/visna virus particles were used to transduce a panel of cell types from various organisms, including sheep, goat, human, hamster, mouse, monkey, and quail. The majority of the cells examined were susceptible to MuLV/visna pseudotype viruses, supporting the notion that the visna virus cellular receptor is a widely expressed protein found in many species. Of 16 different cell types tested, only mouse embryo fibroblast NIH 3T3 cells, hamster ovary CHO cells, and the human promonocyte cell line U937 cells were not susceptible to transduction by the pseudotyped virus. The production of functional MuLV/visna virus pseudotypes has provided a sensitive, biologically relevant system to study visna virus cell entry and envelope-receptor interactions.


2010 ◽  
Vol 84 (11) ◽  
pp. 5719-5729 ◽  
Author(s):  
Tobias Paprotka ◽  
Narasimhan J. Venkatachari ◽  
Chawaree Chaipan ◽  
Ryan Burdick ◽  
Krista A. Delviks-Frankenberry ◽  
...  

ABSTRACT Xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus, has been isolated from human prostate cancer tissue and from activated CD4+ T cells and B cells of patients with chronic fatigue syndrome, suggesting an association between XMRV infection and these two diseases. Since APOBEC3G (A3G) and APOBEC3F (A3F), which are potent inhibitors of murine leukemia virus and Vif-deficient human immunodeficiency virus type 1 (HIV-1), are expressed in human CD4+ T cells and B cells, we sought to determine how XMRV evades suppression of replication by APOBEC3 proteins. We found that expression of A3G, A3F, or murine A3 in virus-producing cells resulted in their virion incorporation, inhibition of XMRV replication, and G-to-A hypermutation of the viral DNA with all three APOBEC3 proteins. Quantitation of A3G and A3F mRNAs indicated that, compared to the human T-cell lines CEM and H9, prostate cell lines LNCaP and DU145 exhibited 50% lower A3F mRNA levels, whereas A3G expression in 22Rv1, LNCaP, and DU145 cells was nearly undetectable. XMRV proviral genomes in LNCaP and DU145 cells were hypermutated at low frequency with mutation patterns consistent with A3F activity. XMRV proviral genomes were extensively hypermutated upon replication in A3G/A3F-positive T cells (CEM and H9), but not in A3G/A3F-negative cells (CEM-SS). We also observed that XMRV replication was susceptible to the nucleoside reverse transcriptase (RT) inhibitors zidovudine (AZT) and tenofovir and the integrase inhibitor raltegravir. In summary, the establishment of XMRV infection in patients may be dependent on infection of A3G/A3F-deficient cells, and cells expressing low levels of A3G/A3F, such as prostate cancer cells, may be ideal producers of infectious XMRV. Furthermore, the anti-HIV-1 drugs AZT, tenofovir, and raltegravir may be useful for treatment of XMRV infection.


1983 ◽  
Vol 3 (12) ◽  
pp. 2191-2202 ◽  
Author(s):  
A L Joyner ◽  
A Bernstein

A series of deletions and insertions utilizing the herpesvirus thymidine kinase gene (tk) were constructed in the murine retrovirus Friend spleen focus-forming virus (SFFV). In all cases, the coding region for the SFFV-specific glycoprotein (gp55), which is implicated in erythroleukemic transformation, was left intact. These SFFV-TK and SFFV deletion vectors were analyzed for expression of tk and gp55 after DNA-mediated gene transfer. In addition, virus rescued by cotransfection of these vectors with Moloney murine leukemia virus was analyzed for infectious TK-transducing virus, gp55 expression, and erythroleukemia-inducing ability. The experiments demonstrated that deletions or insertions within the intron for the gp55 env gene can interfere with expression of gp55 after both DNA-mediated gene transfer and virus infection. In contrast, the gene transfer efficiency of the tk gene was unaffected in the SFFV-TK vectors, and high-titer infectious TK virus could be recovered. Revertant viruses capable of inducing erythroleukemia and expressing gp55 were generated after cotransfection of the SFFV-TK vectors with murine leukemia virus. The revertant viruses lost both tk sequences and the ability to transduce TK- fibroblasts to a TK+ phenotype. These experiments demonstrate that segregation of the TK and erythroleukemia functions can occur in retrovirus vectors which initially carry both markers.


Sign in / Sign up

Export Citation Format

Share Document