Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and α4β1-integrin enhances production of osteoclast-stimulating activity

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1953-1960 ◽  
Author(s):  
Toshimi Michigami ◽  
Nobuaki Shimizu ◽  
Paul J. Williams ◽  
Maria Niewolna ◽  
Sarah L. Dallas ◽  
...  

Abstract Myeloma is a unique hematologic malignancy that exclusively homes in the bone marrow and induces massive osteoclastic bone destruction presumably by producing cytokines that promote the differentiation of the hematopoietic progenitors to osteoclasts (osteoclastogenesis). It is recognized that neighboring bone marrow stromal cells influence the expression of the malignant phenotype in myeloma cells. This study examined the role of the interactions between myeloma cells and neighboring stromal cells in the production of osteoclastogenic factors to elucidate the mechanism underlying extensive osteoclastic bone destruction. A murine myeloma cell line 5TGM1, which causes severe osteolysis, expresses α4β1-integrin and tightly adheres to the mouse marrow stromal cell line ST2, which expresses the vascular cell adhesion molecule-1 (VCAM-1), a ligand for α4β1-integrin. Co-cultures of 5TGM1 with primary bone marrow cells generated tartrate-resistant acid phosphatase-positive multinucleated bone-resorbing osteoclasts. Co-cultures of 5TGM1 with ST2 showed increased production of bone-resorbing activity and neutralizing antibodies against VCAM-1 or α4β1-integrin inhibited this. The 5TGM1 cells contacting recombinant VCAM-1 produced increased osteoclastogenic and bone-resorbing activity. The activity was not blocked by the neutralizing antibody to known osteoclastogenic cytokines including interleukin (IL)-1, IL-6, tumor necrosis factor, or parathyroid hormone-related peptide. These data suggest that myeloma cells are responsible for producing osteoclastogenic activity and that establishment of direct contact with marrow stromal cells via α4β1-integrin/VCAM-1 increases the production of this activity by myeloma cells. They also suggest that the presence of stromal cells may provide a microenvironment that allows exclusive colonization of myeloma cells in the bone marrow.

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1953-1960 ◽  
Author(s):  
Toshimi Michigami ◽  
Nobuaki Shimizu ◽  
Paul J. Williams ◽  
Maria Niewolna ◽  
Sarah L. Dallas ◽  
...  

Myeloma is a unique hematologic malignancy that exclusively homes in the bone marrow and induces massive osteoclastic bone destruction presumably by producing cytokines that promote the differentiation of the hematopoietic progenitors to osteoclasts (osteoclastogenesis). It is recognized that neighboring bone marrow stromal cells influence the expression of the malignant phenotype in myeloma cells. This study examined the role of the interactions between myeloma cells and neighboring stromal cells in the production of osteoclastogenic factors to elucidate the mechanism underlying extensive osteoclastic bone destruction. A murine myeloma cell line 5TGM1, which causes severe osteolysis, expresses α4β1-integrin and tightly adheres to the mouse marrow stromal cell line ST2, which expresses the vascular cell adhesion molecule-1 (VCAM-1), a ligand for α4β1-integrin. Co-cultures of 5TGM1 with primary bone marrow cells generated tartrate-resistant acid phosphatase-positive multinucleated bone-resorbing osteoclasts. Co-cultures of 5TGM1 with ST2 showed increased production of bone-resorbing activity and neutralizing antibodies against VCAM-1 or α4β1-integrin inhibited this. The 5TGM1 cells contacting recombinant VCAM-1 produced increased osteoclastogenic and bone-resorbing activity. The activity was not blocked by the neutralizing antibody to known osteoclastogenic cytokines including interleukin (IL)-1, IL-6, tumor necrosis factor, or parathyroid hormone-related peptide. These data suggest that myeloma cells are responsible for producing osteoclastogenic activity and that establishment of direct contact with marrow stromal cells via α4β1-integrin/VCAM-1 increases the production of this activity by myeloma cells. They also suggest that the presence of stromal cells may provide a microenvironment that allows exclusive colonization of myeloma cells in the bone marrow.


2013 ◽  
Vol 18 (6) ◽  
pp. 637-646 ◽  
Author(s):  
Kristine Misund ◽  
Katarzyna A. Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne C. G. Klein ◽  
...  

The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell–induced protection against common myeloma drugs is also observed with this method.


Neuroreport ◽  
2005 ◽  
Vol 16 (6) ◽  
pp. 581-584 ◽  
Author(s):  
Min Ye ◽  
Shengdi Chen ◽  
Xijin Wang ◽  
Chen Qi ◽  
Guoqiang Lu ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 2195-2202 ◽  
Author(s):  
Masahiro Abe ◽  
Kenji Hiura ◽  
Javier Wilde ◽  
Keiji Moriyama ◽  
Toshihiro Hashimoto ◽  
...  

Abstract Multiple myeloma (MM) cells cause devastating bone destruction by activating osteoclasts in the bone marrow milieu. However, the mechanism of enhanced bone resorption in patients with myeloma is poorly understood. In the present study, we investigated a role of C-C chemokines, macrophage inflammatory protein (MIP)–1α and MIP-1β, in MM cell-induced osteolysis. These chemokines were produced and secreted by a majority of MM cell lines as well as primary MM cells from patients. Secretion of MIP-1α and MIP-1β correlated well with the ability of myeloma cells to enhance osteoclastic bone resorption both in vitro and in vivo as well as in MM patients. In osteoclastogenic cultures of rabbit bone cells, cocultures with myeloma cells as well as addition of myeloma cell-conditioned media enhanced both formation of osteoclastlike cells and resorption pits to an extent comparable to the effect of recombinant MIP-1α and MIP-1β. Importantly, these effects were mostly reversed by neutralizing antibodies against MIP-1α and MIP-1β, or their cognate receptor, CCR5, suggesting critical roles of these chemokines. We also demonstrated that stromal cells express CCR5 and that recombinant MIP-1α and MIP-1β induce expression of receptor activator of nuclear factor-κB (RANK) ligand by stromal cells, thereby stimulating osteoclast differentiation of preosteoclastic cells. These results suggest that MIP-1α and MIP-1β may be major osteoclast-activating factors produced by MM cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3353-3353
Author(s):  
Ramadevi Nimmanapalli ◽  
Elvira Gerbino ◽  
William S. Dalton ◽  
Melissa Alsina

Abstract Multiple myeloma (MM) is characterized by the clonal proliferation of malignant plasma cells that accumulate preferentially in the bone marrow. In spite of high dose chemotherapy and novel targeted therapies this disease remains incurable with a median survival of 3–6 years mainly because of the emergence of drug resistance. Improved survival requires new strategies to prevent relapse. Heat shock proteins (HSPs) are a super family of highly conserved proteins, which are induced in plant, yeast, bacterial and mammalian cells in response to an array of physiological and environmental stress cues. Among heat shock protein families, HSP70 is one of the most highly conserved and is the only protein expressed in response to cellular stress. Exogenous HSP70 has been demonstrated to act as a cytokine to human monocytes by stimulating rapid calcium influx, activating nuclear factor (NF)-kB and up-regulating the expression of IL-1b, IL-6 and tumor necrosis factor alpha (TNF-a) (Asea A et al., 2000). Adhesion of myeloma cells to bone marrow stromal cells mediates IL-6 secretion and tumor cell proliferation in part mediated by STAT-3 activation (Cheung WC et al., 2001). We have shown that adhesion of myeloma cells to bone marrow stromal cells enhances IL-6 secretion by stromal cells and HSP70 secretion by myeloma cells. When we inhibited the HSP70 expression using either KNK437 (HSF-1 inhibitor) or RNAi to HSP70, IL-6 secretion by stromal cells as well as activation of STAT-3 in myeloma cells was inhibited in dose-dependent manner. These results suggest that HSP70 released from myeloma cells is enhancing IL-6 secretion from stromal cells. Incubation of stromal cells with recombinant HSP70 did not enhance IL-6 secretion in stromal cells suggesting that some other soluble factor released from myeloma cells cooperates with HSP70 to enhance IL-6 secretion by stromal cells, We examined whether HSP70 can modulate IL-6 mediated STAT-3 activation by stimulating 8226 cells with IL-6 in the presence or absence of KNK437 and RNAi to HSP70 and measuring phospho-STAT-3 by western analysis. HSP70 inhibition attenuated IL-6 induced STAT-3 activity, but not ERK1/2 activity, indicating that HSP70 mediated IL-6 signaling is very specific to STAT-3. The signal transduction cascade by which HSP70 induces IL-6 secretion and the mechanism by which HSP70 mediates IL-6 induced STAT-3 activity are currently under investigation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2510-2510
Author(s):  
Seong-Woo Kim ◽  
Jin-Hee Hwang ◽  
Hwan-Jung Yun ◽  
Samyong Kim ◽  
Deog-Yeon Jo

Abstract Stromal cell-derived factor-1 (SDF-1) plays a role in the homing of myeloma cells to bone marrow. In addition, SDF-1 modestly enhances the proliferation of myeloma cells and inhibits Dexmethasone (Dex)-induced apoptosis of the cells. Dex is currently used to treat multiple myeloma, based on its apoptic effects. In this study, we investigated the regulatory effects of Dex on SDF-1 production in bone marrow stromal cells (BMSCs) and on CXCR4 expression in myeloma cells. As previously reported, it was evident that primary myeloma cells (CD138+ cells obtained from patients with multiple myeloma) and Dex-resistant myeloma cell line RPMI8226 expressed CXCR4 and responded to SDF-1, resulting in chemotaxis. SDF-1 modestly stimulated the proliferation of primary myeloma cells and RPMI8226 cells and protected the cells from Dex-induced apoptosis. Human umbilical vein endothelial cells transduced with the SDF-1 gene using adenoviral vectors better supported the formation of cobblestone areas of primary myeloma cells and RPMI8226 cells in co-culture, similar to hematopoietic progenitor cells; this was blocked by pretreating the myeloma cells with pertussis toxin, indicating that SDF-1 plays a critical role not only in migration of the cells underneath the SDF-1-producing stromal cells but also in proliferation of the cells in contact. Dex up-regulated CXCR4 expression in RPMI8226 cells; however, its regulatory effects on CXCR4 in primary myeloma cells differed among patients. RT-PCR and Northern blot analyses revealed that Dex down-regulated SDF-1 mRNA expression in both primary BMSCs and murine stromal MS-5 cells in a dose-dependent manner. Western blot analysis and ELISA assay confirmed that Dex inhibited SDF-1 production in BMSCs. Furthermore, Dex inhibited cobblestone area formation of RPMI8226 cells in co-culture with MS-5. Interestingly, Dex up-regulated CXCR4 mRNA expression and cytoplasmic CXCR4 in BMSCs. These results indicate that Dexamethasone induces the down-regulation of SDF-1 production in BMSCs, which might mediate, at least in part, its anti-myeloma effects in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5142-5142
Author(s):  
Akio Mori ◽  
Yutaka Tsutsumi ◽  
Satoshi Hashino ◽  
Hiroe Kanamori ◽  
Makoto Ibata ◽  
...  

Abstract Thalidomide (Thal) alone or in combination with steroids achieves responses even in the setting of refractory multiple myeloma (MM), however, responses are still limited. The precise mechanism of Thal action is unknown, further, no distinct marker, which could prognosticate the efficacy of Thal, is known. Therefore, we evaluated the correlation between the efficacy of Thal and the potent prognostic factors in patients with refractory MM. Ten patients with refractory MM received Thal at doses of 50 or 100 mg per day and steroids, either dexamethasone (Dex) or prednisolone (PSL). Dex was administrated 20 mg per day, 4 days every 28 days, and PSL was administrated 10 mg per day. The median age was 71.5 years (range, 62–79 years) and 20 % were man, and all patients were diagnosed as clinical stage IIIA based on the Durie and Salmon classification. The therapeutic response was assessed according to the modified criteria of Southwest Oncology Group (SWOG). Among 10 patients, 7 patients were the responders; 2 had complete remission, 3 had partial remission, and 2 had minimal remission. There were no differences in the pretreatment characteristics of responders and nonresponders (age, sex, type and concentration of serum and/or urine monoclonal component, international prognostic index, presence of bone lesion, and chromosomal abnormalities). However, flow cytometric evaluation of the myeloma cells revealed that CD56, which is one of the adhesion molecules N-CAM, expressed more than 45 % in all responders, while those expressed less than 5 % in all nonresponders (84 ± 19 (±SD) % v/s 4 ± 2 %, P=0.017). Furthermore, CD56 expression of the myeloma cells was reduced from 84% to 70 ± 32 % after Thal therapy in all evaluated responders (P =0.048). These results suggest that CD56 expression of the myeloma cells could be the potent prognostic marker of the Thal efficacy. Moreover, it was reported that Thal reduced the expression of cell adhesion molecules, such as LFA-1 and ICAM-1, and abrogated the binding of MM cells to bone marrow stromal cells, that triggered the secretion of interleukin-6 and vascular endothelial growth factor. Taken together, it was suggested that Thal reduced the expression of CD56 and altered the MM cell adhesion to bone marrow stromal cells, and that could be one of the pathogenesis of anti-MM activity of Thal.


Sign in / Sign up

Export Citation Format

Share Document