Interleukin-6 dimers produced by endothelial cells inhibit apoptosis of B-chronic lymphocytic leukemia cells

Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 242-249 ◽  
Author(s):  
Ana Moreno ◽  
Marı́a Luisa Villar ◽  
Carmen Cámara ◽  
Rosario Luque ◽  
Constantino Cespón ◽  
...  

Abstract Tumoral lymphocytes from patients with B-chronic lymphocytic leukemia (B-CLL) are long-lived cells in vivo, but they die rapidly by apoptosis in vitro. Here, it is reported that endothelial cells (ECs) inhibit the apoptosis of B-CLL cells, as determined by 4 different flow cytometric methods, and that this antiapoptotic effect is mediated mainly by soluble factor(s), as can be deduced from the following findings. First, EC-conditioned medium (ECCM) inhibited the apoptotic rate in B-CLL to approximately 50% of control. Second, the antiapoptotic effect mediated by EC/B-CLL cell contact was more apparent than real; using a fluorescence-based phagocytosis assay, it was demonstrated that this effect was due to the phagocytic capacity of ECs, which internalized apoptotic cells. Third, the protective effect of ECCM was associated neither with proliferation nor differentiation signals. Fourth, the survival factor was a dimeric form of IL-6 because anti–IL-6 antibodies completely neutralized the antiapoptotic effect mediated not only by the crude ECCM but also by the 45- to 55-kd active fractions obtained after gel filtration, which contained high levels of IL-6. These IL-6 dimers (IL-6D) were noncovalently associated. Sixth, human recombinant IL-6D(hrIL-6D) inhibited B-CLL apoptosis, whereas hrIL-6 monomers (hrIL-6M) did not. Binding and functional competition experiments showed not only that monomers and dimers had similar affinity for the IL-6R, but also that hrIL-6Minhibited the antiapoptotic activity of hrIL-6D. These data suggest that IL-6D derived from ECs promote the survival of B-CLL cells.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3683-3683
Author(s):  
Jerome Paggetti ◽  
Guy J. Berchem ◽  
Etienne Moussay

Abstract Chronic lymphocytic leukemia (CLL) is characterized by the accumulation in the blood and the primary lymphoid organs of long-lasting, mature, but non-functional B lymphocytes. Although CLL B cells can survive for long time periods in vivo, cells are undergoing apoptosis relatively quickly in vitro. This spontaneous apoptosis and their sensitivity to drugs is strongly reduced in presence of bone marrow mesenchymal stem cells (MSC) and endothelial cells (EC), which provide anti-apoptotic stimuli to CLL cells via direct contact or secretion of soluble factors. We recently reported the first profiling of circulating miRNA obtained from plasma of CLL patients (Moussay et al., PNAS, 2011). Specific miRNAs were found at higher level in the plasma of CLL patients compared to healthy donors. Exosomes, which are small extracellular vesicles of 50-150 nm originating from endosomes, are now known to efficiently transport nucleic acids and transfer mRNA, microRNA and proteins to target cells. Therefore, exosomes constitute a new component of intercellular communication and their role in CLL remains totally unknown. The specific miRNA signature from plasma of CLL patients combined with our observations that primary CLL B cells can transfer vesicles to MSC through 0.4 µm culture inserts in vitro prompted us to investigate whether CLL B cells secrete exosomes that could modify cells of the bone marrow microenvironment to produce tumor growth promoting factors locally in order to favor their own survival. We isolated, purified and characterized exosomes derived from CLL cell lines, primary cells culture supernatants and plasma from CLL patients. Proteins, mRNA and microRNAs contents were evaluated by high-throughput methods (LC-MS, microarrays) revealing in particular the presence of oncogenic molecules. In vitro, purified CLL-exosomes were found to rapidly enter target cells (already after 1h in MSC and endothelial cells) and to transfer proteins and miRNA. Flow cytometry showed that transferred proteins were expressed at cell surface. Luciferase reporter assay confirmed that miRNAs were efficient in targeting cellular mRNA. Exosomes could also be taken up ex vivo and in vivo by mouse bone marrow cells. Functionally, CLL-exosomes activated key signaling pathways (PI3K, AKT, and MAPK) Immunoblotting indicated the rapid phosphorylation of kinases after 5 min of incubation with CLL-exosomes and the subsequent activation of the canonical NF-kB pathway. We also observed that CLL-exosomes modulated gene expression in target cells among which cytokines (BAFF, IL-6, and IL-8), chemokines (CCL2/MCP-1, CCL5/RANTES, and CXCL1), and other factors involved in cell adhesion and migration (ICAM-1 and MMP-1). These factors were also secreted in the supernatants of MSC and EC as detected by antibody arrays. Exosomes were also shown to increase MSC and EC proliferation, to stimulate actin remodeling, cell migration and to enhance EC angiogenic capabilities (tube formation and aortic ring assays). In conclusion, CLL-exosomes contain pro-oncogenic molecules and strongly affect key functions of MSC and EC which are critical component of the bone marrow microenvironment. Activation of these cells by CLL-exosomes led to release of cytokines/chemokines and oncogenic factors that could promote angiogenesis and also favor leukemic cells survival and migration. Our findings may lead to applications in both diagnosis and therapy development. Molecules identified at the surface or inside CLL-exosomes may be further used as cancer biomarkers. Finally, the description of cell-to-cell communication mechanisms will generate opportunities of innovative therapeutic strategies and confirms the crucial role of exosomes in the development of CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 119 (20) ◽  
pp. 4708-4718 ◽  
Author(s):  
Anja Troeger ◽  
Amy J. Johnson ◽  
Jenna Wood ◽  
William G. Blum ◽  
Leslie A. Andritsos ◽  
...  

Abstract Trafficking of B-cell chronic lymphocytic leukemia (CLL) cells to the bone marrow and interaction with supporting stromal cells mediates important survival and proliferation signals. Previous studies have demonstrated that deletion of Rhoh led to a delayed disease onset in a murine model of CLL. Here we assessed the impact of RhoH on homing, migration, and cell-contact dependent interactions of CLL cells. Rhoh−/− CLL cells exhibited reduced marrow homing and subsequent engraftment. In vitro migration toward the chemokines CXCL12 and CXCL13 and cell-cell interactions between Rhoh−/− CLL cells and the supporting microenvironment was reduced. In the absence of RhoH the distribution of phosphorylated focal adhesion kinase, a protein known to coordinate activation of the Rho GTPases RhoA and Rac, appeared less polarized in chemokine-stimulated Rhoh−/− CLL cells, and activation and localization of RhoA and Rac was dysregulated leading to defective integrin function. These findings in the Rhoh−/− CLL cells were subsequently demonstrated to closely resemble changes in GTPase activation observed in human CLL samples after in vitro and in vivo treatment with lenalidomide, an agent with known influence on microenvironment protection, and suggest that RhoH plays a critical role in prosurvival CLL cell-cell and cell-microenvironment interactions with this agent.


Blood ◽  
2021 ◽  
Author(s):  
Billy Michael Chelliah Jebaraj ◽  
Annika Müller ◽  
Rashmi Priyadharshini Dheenadayalan ◽  
Sascha Endres ◽  
Philipp M. Roessner ◽  
...  

Covalent Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop by a mutation in cysteine 481 of BTK (C481S), which prevents the irreversible binding of the drugs. In the present study we performed pre-clinical characterization of vecabrutinib, a next generation non-covalent BTK inhibitor, with ITK inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wildtype BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, while the naïve populations were increased. Of importance, vecabrutinib treatment significantly reduced frequency of regulatory CD4+ T-cells (Tregs) in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on activation and proliferation of isolated T-cells. Lastly, combination treatment of vecabrutinib with venetoclax was found to augment treatment efficacy, significantly improve survival and lead to favourable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, non-covalent BTK/ITK inhibitors such as vecabrutinib may be efficacious in C481S BTK mutant CLL, while preserving the T-cell immunomodulatory function of ibrutinib.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4389-4395 ◽  
Author(s):  
Freda K. Stevenson ◽  
Federico Caligaris-Cappio

Abstract The finding that chronic lymphocytic leukemia (CLL) consists of 2 clinical subsets, distinguished by the incidence of somatic mutations in the immunoglobulin (Ig) variable region (V) genes, has clearly linked prognosis to biology. Antigen encounter by the cell of origin is indicated in both subsets by selective but distinct expression of V genes, with evidence for continuing stimulation after transformation. The key to distinctive tumor behavior likely relates to the differential ability of the B-cell receptor (BCR) to respond. Both subsets may be undergoing low-level signaling in vivo, although analysis of blood cells limits knowledge of critical events in the tissue microenvironment. Analysis of signal competence in vitro reveals that unmutated CLL generally continues to respond, whereas mutated CLL is anergized. Differential responsiveness may reflect the increased ability of post-germinal center B cells to be triggered by antigen, leading to long-term anergy. This could minimize cell division in mutated CLL and account for prognostic differences. Unifying features of CLL include low responsiveness, expression of CD25, and production of immunosuppressive cytokines. These properties are reminiscent of regulatory T cells and suggest that the cell of origin of CLL might be a regulatory B cell. Continuing regulatory activity, mediated via autoantigen, could suppress Ig production and lead to disease-associated hypogammaglobulinemia. (Blood. 2004;103:4389-4395)


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 990-995 ◽  
Author(s):  
Maria Fiammetta Romano ◽  
Annalisa Lamberti ◽  
Pierfrancesco Tassone ◽  
Fiorella Alfinito ◽  
Silvia Costantini ◽  
...  

Abstract We analyzed the effect of CD40 triggering on the fludarabine-induced apoptosis of B chronic lymphocytic leukemia (B-CLL) cells. Peripheral blood samples obtained from 15 patients were incubated with fludarabine in the absence or the presence of the anti-CD40 monoclonal antibody (MoAb) G28-5. In 12 patients a significant proportion of apoptotic cells, ranging from 22% to 38% (mean ± SE: 28.5 ± 1.6), were detected after 3 days of culture. In 9 of these samples, the addition of G28-5 reduced apoptosis by at least 30.1% and by 57.1% ± 7.8% on average (P = .0077). Because the CD40 antigen activates NF-κB/Rel transcription factors in B cells, and NF-κB/Rel complexes can inhibit cell apoptosis, we investigated whether the antiapoptotic effect of G28-5, in our system, could be related to modulation of NF-κB/Rel activity. As expected, B-CLL cells displayed significant levels of nuclear NF-κB/Rel activity; p50, RelA, and c-Rel components of the NF-κB/Rel protein family were identified in these complexes. After exposure to fludarabine, NF-κB/Rel complexes were decreased in the nuclei. The addition of G28-5 upregulated the NF-κB/Rel levels. To determine the involvement of NF-κB/Rel activity in the G28-5–mediated inhibition of apoptosis, we blocked the transcription factor with a decoy oligonucleotide, corresponding to the NF-κB/Rel consensus sequence. Cells incubated with the anti-CD40 MoAb in the presence of the decoy oligonucleotide but not a control oligonucleotide displayed a complete impairment of the G28-5 antiapoptotic effect, indicating that NF-κB/Rel activity was required for the inhibition of apoptosis. These results suggest that CD40 triggering in vivo could counteract the apoptotic effect of fludarabine on B-CLL cells and that its neutralization, or the use of NF-κB/Rel inhibitors, could improve the therapeutic effect of fludarabine. © 1998 by The American Society of Hematology.


Blood ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 582-595 ◽  
Author(s):  
Marwan Kwok ◽  
Nicholas Davies ◽  
Angelo Agathanggelou ◽  
Edward Smith ◽  
Ceri Oldreive ◽  
...  

Key PointsATR inhibition is synthetically lethal to TP53- or ATM-defective CLL cells. ATR targeting induces selective cytotoxicity and chemosensitization in TP53- or ATM-defective CLL cells in vitro and in vivo.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Jan A. Burger

Abstract Intrinsic factors such as genetic lesions, anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long been the main focus of chronic lymphocytic leukemia (CLL) research. However, over the past decade, it became increasingly clear that external signals from the leukemia microenvironment make pivotal contributions to disease progression in CLL and other B-cell malignancies. Consequently, increasing emphasis is now placed on exploring and targeting the CLL microenvironment. This review highlights critical cellular and molecular pathways of CLL-microenvironment cross-talk. In vitro and in vivo models for studying the CLL microenvironment are discussed, along with their use in searching for therapeutic targets and in drug testing. Clinically, CXCR4 antagonists and small-molecule antagonists of B cell receptor (BCR)-associated kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], and PI3Kδ) are the most advanced drugs for targeting specific interactions between CLL cells and the miocroenvironment. Preclinical and first clinical evidence suggests that high-risk CLL patients can particularly benefit from these alternative agents. These findings indicate that interplay between leukemia-inherent and environmental factors, nature and nurture determines disease progression in CLL.


2018 ◽  
Vol 215 (2) ◽  
pp. 681-697 ◽  
Author(s):  
Erika Tissino ◽  
Dania Benedetti ◽  
Sarah E.M. Herman ◽  
Elisa ten Hacken ◽  
Inhye E. Ahn ◽  
...  

The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors.


1988 ◽  
Vol 80 (3) ◽  
pp. 129-133 ◽  
Author(s):  
Robert Schrek ◽  
William R. Best ◽  
Stefano Stefani

Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 667-671 ◽  
Author(s):  
F Lauria ◽  
D Raspadori ◽  
S Tura

Abstract Abnormalities of T lymphocytes in B cell chronic lymphocytic leukemia (B-CLL) have been extensively documented by several immunologic investigations. Following recent studies pointing to the favorable effect of TP-1, a partially purified extract of calf thymus, on the T cell-mediated immunity of several diseases, including Hodgkin's disease, we have used monoclonal antibodies and the enriched T lymphocytes of 16 untreated B-CLL patients to evaluate the proportion of T cell subsets before and after the administration of TP-1. In addition, the proliferative response to phytohemagglutinin (PHA) and the helper function in a pokeweed mitogen (PWM) system were assessed. In ten cases, the effect of TP-1 was also studied in vitro by evaluating the same parameters before and after incubation of B-CLL T cells with the drug. The study demonstrated that in vivo administration of TP-1 increases significantly (P less than .001) the proportion of the defective helper/inducer T cell population (OKT4-positive cells) in B-CLL, leading to a near normal OKT4/OKT8 ratio. Furthermore, the improved phenotypic profile was accompanied by an increased proliferative response to PHA and, in particular, by a significant increase (P less than .01) of T helper capacity; this increase was, however, insufficient to enable the normalization of the serum immunoglobulin levels. The in vitro incubation of B-CLL T lymphocytes did not succeed in producing significant modifications in distribution and function.


Sign in / Sign up

Export Citation Format

Share Document