Selective inhibitor of Janus tyrosine kinase 3, PNU156804, prolongs allograft survival and acts synergistically with cyclosporine but additively with rapamycin

Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 680-689 ◽  
Author(s):  
Stanislaw M. Stepkowski ◽  
Rebecca A. Erwin-Cohen ◽  
Fariba Behbod ◽  
Mou-Er Wang ◽  
Xienui Qu ◽  
...  

Abstract Janus kinase 3 (Jak3) is a cytoplasmic tyrosine (Tyr) kinase associated with the interleukin-2 (IL-2) receptor common gamma chain (γc) that is activated by multiple T-cell growth factors (TCGFs) such as IL-2, -4, and -7. Using human T cells, it was found that a recently discovered variant of the undecylprodigiosin family of antibiotics, PNU156804, previously shown to inhibit IL-2–induced cell proliferation, also blocks IL-2–mediated Jak3 auto-tyrosine phosphorylation, activation of Jak3 substrates signal transducers and activators of transcription (Stat) 5a and Stat5b, and extracellular regulated kinase 1 (Erk1) and Erk2 (p44/p42). Although PNU156804 displayed similar efficacy in blocking Jak3-dependent T-cell proliferation by IL-2, -4, -7, or -15, it was more than 2-fold less effective in blocking Jak2-mediated cell growth, its most homologous Jak family member. A 14-day alternate-day oral gavage with 40 to 120 mg/kg PNU156804 extended the survival of heart allografts in a dose-dependent fashion. In vivo, PNU156804 acted synergistically with the signal 1 inhibitor cyclosporine A (CsA) and additively with the signal 3 inhibitor rapamycin to block allograft rejection. It is concluded that inhibition of signal 3 alone by targeting Jak3 in combination with a signal 1 inhibitor provides a unique strategy to achieve potent immunosuppression.




1999 ◽  
Vol 190 (12) ◽  
pp. 1891-1896 ◽  
Author(s):  
Norman J. Kennedy ◽  
Takao Kataoka ◽  
Jürg Tschopp ◽  
Ralph C. Budd

Triggering of Fas (CD95) by its ligand (FasL) rapidly induces cell death via recruitment of the adaptor protein Fas-associated death domain (FADD), resulting in activation of a caspase cascade. It was thus surprising that T lymphocytes deficient in FADD were reported recently to be not only resistant to FasL-mediated apoptosis, but also defective in their proliferative capacity. This finding suggested potentially dual roles of cell growth and death for Fas and possibly other death receptors. We report here that CD3-induced proliferation and interleukin 2 production by human T cells are blocked by inhibitors of caspase activity. This is paralleled by rapid cleavage of caspase-8 after CD3 stimulation, but no detectable processing of caspase-3 during the same interval. The caspase contribution to T cell activation may occur via TCR-mediated upregulation of FasL, as Fas-Fc blocked T cell proliferation, whereas soluble FasL augmented CD3-induced proliferation. These findings extend the role of death receptors to the promotion of T cell growth in a caspase-dependent manner.



1983 ◽  
Vol 158 (6) ◽  
pp. 1895-1911 ◽  
Author(s):  
D A Cantrell ◽  
K A Smith

T lymphocyte mitosis results from the interaction of interleukin 2 (IL-2) with specific receptors that appear only after appropriate immune stimulation. To assess the potential role of IL-2 receptor levels in determining the rate and magnitude of T cell proliferation, the expression of IL-2 receptors by lectin-stimulated human peripheral blood T cells was examined and correlated with T cell growth. Using biosynthetically radiolabeled IL-2 and anti-Tac, a monoclonal antibody that blocks IL-2 receptor binding, IL-2 receptors were found to accumulate slowly and asynchronously among lectin-stimulated T cells and to precede the onset of DNA synthesis. Moreover, a critical threshold of IL-2 receptor density appeared to be required before the commitment to cell cycle progression, as analyzed quantitatively by tritiated thymidine incorporation and flow cytometric analysis of cellular DNA content. Once maximal IL-2 receptor expression occurred, continued proliferation was IL-2 concentration dependent as assessed using homogenous immunoaffinity-purified IL-2. Upon removal of the activating lectin, IL-2 receptor levels progressively declined, and, in parallel, the rate of proliferation diminished. The decay of IL-2 receptors could not be attributed to IL-2-mediated down-regulation. Instead, renewed IL-2 receptor expression was dependent upon the reintroduction of the initial activating signal. Repetitive exposure to lectin resulted in a more rapid reexpression of maximal IL-2 receptor levels, which was then followed by an accelerated resumption of proliferation. Thus, the extent of T cell proliferation after immune stimulation depends upon the interplay of the IL-2 concentration available and the density of IL-2 receptors expressed, both of which are ultimately determined by antigen/lectin stimulation. The awareness of the transience and the antigen/lectin dependence of IL-2 receptor expression, together with the capacity to monitor T cell cultures for IL-2 receptor levels, should facilitate the initiation and maintenance of cloned, antigen-specific T cells in long-term culture. In addition, these findings suggest that, in vivo, the rapidity of acquisition of maximum IL-2 receptor levels by activated T cells and the duration of IL-2 receptor expression may well direct the magnitude of T cell clonal expansion and resultant immune responses.



Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1753-1753 ◽  
Author(s):  
Shih-Shih Chen ◽  
Steven Ham ◽  
Kanti R. Rai ◽  
Karen McGovern ◽  
Jeffery L. Kutok ◽  
...  

Abstract Duvelisib (IPI-145), a dual inhibitor of phosphoinositide 3-kinase (PI3K)-δ and -γ, has shown clinical activity in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL) patients. Clinically, duvelisib results in a redistribution of malignant B cells and concomitant reduction in nodal enlargement. These effects are believed to be due to important roles of PI3K- δ and -γ in CXCL12-mediated CLL cell migration (Peluso 2014), cytokine-induced CLL B-cell proliferation, and BCR-stimulated B-cell survival (Balakrishnan 2015). Additional data suggest an effect of duvelisib on the tumor supporting cells of the CLL microenvironment. This includes preclinical studies demonstrating that PI3K-γ inhibition blocks normal T cell migration toward tumor chemokines and prevents murine bone marrow-derived M2 macrophage polarization (Peluso 2014), as well as clinical data in CLL patients receiving duvelisib showing reduced serum levels of myeloid and T cell-secreted cytokines and chemokines (Douglas 2015). To further characterize duvelisib's effect on CLL cells and the tumor microenvironment (TME), a murine xenograft model using primary human CLL cells was employed. We first studied duvelisib's effect on CLL B- and T-cell migration in vivo. CLL PBMCs (n=2; 1 IGHV unmutated (U)-CLL, 1 IGHV mutated (M)-CLL) pre-treated with duvelisib for 48 hours were injected retro-orbitally into NOD-scid IL2Rgammanull (NSG) mice. B- and T-cell localization in tissues and circulation was studied 1 and 24 hours post-injection. Duvelisib treatment (1000 nM) prevented the egress of CLL B and T cells from the circulation into the spleen, indicating impaired homing of CLL B and T cells. To better define the effect of duvelisib on T-cell migration, T cells from CLL patients (n=3; 2 U-CLL, 1 M-CLL) treated ex vivo with duvelisib at 1, 10, 100 and 1000 nM were injected into mice and analyzed for their trafficking 24 hours later. Inhibition of T-cell homing to spleen was dose dependent, with only 100 and 1000 nM having significant effects. Given duvelisib's cellular IC50s for PI3K isoforms, these results suggest that impaired T-cell migration is due to PI3K-γ inhibition, and studies with isoform-selective PI3K-δ and PI3K-γ inhibitors are currently underway to examine this possibility. The effect of duvelisib on CLL T-cell proliferation was evaluated after in vitro activation with anti-CD3/28 Dynabeads plus IL2 (n=6; 3 U-CLL, 3M-CLL). In duvelisib treated cells, CD4+, but not CD8+, T-cell proliferation was inhibited at doses of 100 and 1000 nM, suggesting a role for PI3K-γ. The effects of duvelisib on CLL B- and T-cell growth in vivo (n=4; 2 U-CLL, 2 M-CLL) were then studied. Autologous CLL T cells were stimulated as above and injected with CLL PBMCs into NSG mice. Animals treated orally with duvelisib for 3 weeks at 100 mg/kg/day had preferentially reduced CD4+ T-cell recovery from spleens, thereby decreasing the CD4 to CD8 ratio. In each case, duvelisib treatment reduced the number of splenic CLL B cells. This reduction reflected inhibition of both CLL cell proliferation and survival, since duvelisib treatment decreased the percentage of cycling CLL cells and increased the percentage of apoptotic B cells. Thus, duvelisib may target CLL B-cell growth directly, or indirectly by inhibiting the support of CD4+ T cells in the TME. The potential effect of duvelisib on the tumor-supporting myeloid compartment was also tested. Because of limited human myeloid-cell engraftment in our NSG model, we studied the effect of duvelisib on murine macrophages. Mice receiving duvelisib had reduced numbers of splenic CD11b+ GR-1low LY-6Clow LY-6Gneg macrophages compared to controls, suggesting duvelisib altered macrophage development. Prior in vitro studies demonstrated inhibition of CLL B-cell survival and proliferation by duvelisib, as well as blockade of T-cell migration and M2 macrophage polarization (Balakrishnan 2015; Peluso 2014). Our current in vivo studies further support duvelisib's effect on CLL B-cell growth and survival through inhibition of cellular homing to supportive tissue niches and alterations in the TME. The latter, in part, is through suppression of T-cell support and alterations in the macrophage compartment. Overall, these preclinical results suggest that inhibition of PI3K-δ and PI3K-γ by duvelisib affects CLL cell survival through direct and indirect mechanisms. Disclosures McGovern: Infinity Pharmaceuticals, Inc.: Employment. Kutok:Infinity Pharmaceuticals, Inc.: Employment.



Blood ◽  
2005 ◽  
Vol 106 (9) ◽  
pp. 3227-3233 ◽  
Author(s):  
Kunihiro Yamaoka ◽  
Booki Min ◽  
Yong-Jie Zhou ◽  
William E. Paul ◽  
John J. O'Shea

AbstractCytokines are critical in regulating the development and function of diverse cells. Janus kinase 3 (Jak3) is a tyrosine kinase expressed in hematopoietic cells that associates with the common gamma chain (γc) and is required for signaling for a family of cytokines including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21; deficiency of either Jak3 or γc results in severe combined immunodeficiency (SCID). While Jak3 is essential for lymphoid-cell development, the potential roles for Jak3 in regulating dendritic cells (DCs) were unclear. Herein, we show that although CD8+CD11c+ splenic DCs are absent in Jak3-/- mice, bone marrow–derived DCs developed normally in vitro from Jak3-/- precursor cells. In fact, the survival of Jak3-/- DCs was enhanced, and they expressed lower levels of proapoptotic proteins. Jak3-/- DCs exhibited normal antigen uptake and up-regulation of costimulatory molecules. However, Jak3-/- DCs produced more IL-12 and IL-10 in response to Toll-like receptor ligands, which correlated with enhanced T helper 1 (Th1) differentiation in vivo. In summary, Jak3 is not essential for DC development but unexpectedly appears to be an important negative regulator. These results may be relevant clinically for patients with SCID who have undergone hematopoietic stem cell transplantation and for patients who might be treated with a Jak3 inhibitor.



2006 ◽  
Vol 80 (4) ◽  
pp. 1826-1836 ◽  
Author(s):  
Allison T. Thiele ◽  
Tina L. Sumpter ◽  
Joanna A. Walker ◽  
Qi Xu ◽  
Cheong-Hee Chang ◽  
...  

ABSTRACT Adenovirus (Ad) infection has been identified as predisposing hosts to the development of pulmonary disease through unknown mechanisms. Lung dendritic cells (DCs) are vital for initiating pulmonary immune responses; however, the effects of Ad infection on primary lung DC have not been studied. In contrast to the effects on bone marrow- and monocyte-derived DCs, the current study shows that Ad infection of murine BALB/c lung DCs in vitro and in vivo suppresses DC-induced T-cell proliferation. The effect of Ad on DCs was not due to a downregulation of major histocompatibility complex or costimulatory molecules. Analysis of the production of interleukin-12 (IL-12), alpha interferon (IFN-α), and IFN-γ by the Ad-infected DCs shows no significant differences over noninfected control lung DCs. Ad-induced suppression was not due to a deficiency of IL-2 or other DC-secreted factors and was dependent on viral protein synthesis, as UV irradiation of Ad abrogated the suppressive effect. Results suggest that Ad-infected DCs induce T cells to be nonresponsive to IL-2 during primary coculture, as the addition of IL-2 in secondary cultures recovered T-cell proliferation. In vivo studies supported in vitro results showing that Ad infection resulted in lung T cells with decreased proliferative ability. This study demonstrates that Ad infection induces local immunoincompetence by altering DC-T-cell interactions.



1996 ◽  
Vol 68 (1-2) ◽  
pp. 131-138 ◽  
Author(s):  
Giorgio Santoni ◽  
Marina Perfumi ◽  
Anna Maria Bressan ◽  
Mario Piccoli


Sign in / Sign up

Export Citation Format

Share Document