Regulation of polymorphonuclear leukocyte degranulation and oxidant production by ceramide through inhibition of phospholipase D

Blood ◽  
2002 ◽  
Vol 99 (4) ◽  
pp. 1434-1441 ◽  
Author(s):  
Pamela J. Mansfield ◽  
Vania Hinkovska-Galcheva ◽  
Shannon S. Carey ◽  
James A. Shayman ◽  
Laurence A. Boxer

Exogenous C2-ceramide has been shown to inhibit polymorphonuclear leukocyte (PMN) phagocytosis through inhibition of phospholipase D (PLD) and downstream events, including activation of extracellular signal–regulated kinases 1 and 2, leading to the hyphothesis that the sphingomyelinase pathway is involved in termination of phagocytosis. Here it is postulated that increased PLD activity generating phosphatidic acid and diacylglycerol (DAG) is essential for superoxide release and degranulation and that ceramide, previously shown to be generated during PMN activation, inhibits PLD activation, thereby leading to inhibition of PMN function. When PMNs were primed with granulocyte colony-stimulating factor (G-CSF) and then activated with N-formyl-methionyl-leucyl-phenylalanine (FMLP), C2-ceramide (10 μM) completely inhibited release of superoxide, lactoferrin, and gelatinase; the DAG analog sn-1,2-didecanoylglycerol (DiC10) (10 μM) restored oxidase activation and degranulation in the ceramide-treated cells. Similarly, C2-ceramide inhibited oxidase activity and degranulation of PMNs treated with cytochalasin B followed by FMLP, and DiC10 restored function. In contrast, C2-ceramide did not inhibit phosphorylation of p47phox or p38 mitogen-activated protein kinase, or translocation of p47phox, PLD-containing organelles, adenosine diphosphate–ribosylation factor 1, RhoA, protein kinase C (PKC)–β or PKC-α to the plasma membrane in G-CSF or cytochalasin B–treated, FMLP-activated PMNs. PLD activity increased by 3-fold in G-CSF–primed PMNs stimulated by FMLP and by 30-fold in cytochalasin B–treated PMNs stimulated by FMLP. Both PLD activities were completely inhibited by 10 μM C2-ceramide. In conclusion, superoxide, gelatinase, and lactoferrin release require activation of the PLD pathway in primed PMNs and cytochalasin B–treated PMNs. Ceramide may affect protein interactions with PLD in the plasma membrane, thereby attenuating PMN activation.

Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 686-693 ◽  
Author(s):  
Evelin M.B. Raeder ◽  
Pamela J. Mansfield ◽  
Vania Hinkovska-Galcheva ◽  
Lars Kjeldsen ◽  
James A. Shayman ◽  
...  

Abstract In the present study, we investigated the mechanism by which sphingosine and its analogues, dihydrosphingosine and phytosphingosine, inhibit polymorphonuclear leukocyte (PMN) phagocytosis of IgG-opsonized erythrocytes (EIgG) and inhibit ERK1 and ERK2 phosphorylation. We used antibodies that recognized the phosphorylated forms of ERK1 (p44) and ERK2 (p42) (extracellular signal-regulated protein kinases 1 and 2). Sphingoid bases inhibited ERK1 and ERK2 activation and phagocytosis of EIgG in a concentration-dependent manner. Incubation with glycine, N,N′-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-bis[(acetyloxy)methyl]ester (BAPTA,AM), an intracellular chelator of calcium, failed to block either phagocytosis or ERK1 and ERK2 phosphorylation, consistent with the absence of a role for a calcium-dependent protein kinase C (PKC) in ERK1 and ERK2 phosphorylations. Western blotting demonstrated that sphingosine inhibited the translocation of Raf-1 and PKCδ from PMN cytosol to the plasma membrane during phagocytosis. These data are consistent with the interpretation that sphingosine regulates ERK1 and ERK2 phosphorylation through inhibition of PKCδ, and this in turn leads to inhibition of Raf-1 translocation to the plasma membrane. Consistent with this interpretation, the sphingosine-mediated inhibition of phagocytosis, ERK2 activation, and PKCδ translocation to the plasma membrane could be abrogated with a cell-permeable diacylglycerol analog. The increase in the diacylglycerol mass correlated with the translocation of PKCδ and Raf-1 to the plasma membrane by 3 minutes after the initiation of phagocytosis. Additionally, the diacylglycerol analog enhanced phagocytosis by initiating activation of PKCδ and its translocation to the plasma membrane. Because PMN generate sufficient levels of sphingosine by 30 minutes during phagocytosis of EIgG to inhibit phagocytosis, it appears that sphingosine can serve as an endogenous regulator of EIgG-mediated phagocytosis by downregulating ERK activation.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 686-693 ◽  
Author(s):  
Evelin M.B. Raeder ◽  
Pamela J. Mansfield ◽  
Vania Hinkovska-Galcheva ◽  
Lars Kjeldsen ◽  
James A. Shayman ◽  
...  

In the present study, we investigated the mechanism by which sphingosine and its analogues, dihydrosphingosine and phytosphingosine, inhibit polymorphonuclear leukocyte (PMN) phagocytosis of IgG-opsonized erythrocytes (EIgG) and inhibit ERK1 and ERK2 phosphorylation. We used antibodies that recognized the phosphorylated forms of ERK1 (p44) and ERK2 (p42) (extracellular signal-regulated protein kinases 1 and 2). Sphingoid bases inhibited ERK1 and ERK2 activation and phagocytosis of EIgG in a concentration-dependent manner. Incubation with glycine, N,N′-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-bis[(acetyloxy)methyl]ester (BAPTA,AM), an intracellular chelator of calcium, failed to block either phagocytosis or ERK1 and ERK2 phosphorylation, consistent with the absence of a role for a calcium-dependent protein kinase C (PKC) in ERK1 and ERK2 phosphorylations. Western blotting demonstrated that sphingosine inhibited the translocation of Raf-1 and PKCδ from PMN cytosol to the plasma membrane during phagocytosis. These data are consistent with the interpretation that sphingosine regulates ERK1 and ERK2 phosphorylation through inhibition of PKCδ, and this in turn leads to inhibition of Raf-1 translocation to the plasma membrane. Consistent with this interpretation, the sphingosine-mediated inhibition of phagocytosis, ERK2 activation, and PKCδ translocation to the plasma membrane could be abrogated with a cell-permeable diacylglycerol analog. The increase in the diacylglycerol mass correlated with the translocation of PKCδ and Raf-1 to the plasma membrane by 3 minutes after the initiation of phagocytosis. Additionally, the diacylglycerol analog enhanced phagocytosis by initiating activation of PKCδ and its translocation to the plasma membrane. Because PMN generate sufficient levels of sphingosine by 30 minutes during phagocytosis of EIgG to inhibit phagocytosis, it appears that sphingosine can serve as an endogenous regulator of EIgG-mediated phagocytosis by downregulating ERK activation.


1999 ◽  
Vol 277 (6) ◽  
pp. G1165-G1172 ◽  
Author(s):  
Cynthia R. L. Webster ◽  
M. Sawkat Anwer

cAMP stimulates Na+-taurocholate (TC) cotransport by translocating the Na+-TC-cotransporting peptide (Ntcp) to the plasma membrane. The present study was undertaken to determine whether the phosphatidylinositol-3-kinase (PI3K)-signaling pathway is involved in cAMP-mediated translocation of Ntcp. The ability of cAMP to stimulate TC uptake declined significantly when hepatocytes were pretreated with PI3K inhibitors wortmannin or LY-294002. Wortmannin inhibited cAMP-mediated translocation of Ntcp to the plasma membrane. cAMP stimulated protein kinase B (PKB) activity by twofold within 5 min, an effect inhibited by wortmannin. Neither basal mitogen-activated protein kinase (MAPK) activity nor cAMP-mediated inhibition of MAPK activity was affected by wortmannin. cAMP also stimulated p70S6K activity. However, rapamycin, an inhibitor of p70S6K, failed to inhibit cAMP-mediated stimulation of TC uptake, indicating that the effect of cAMP is not mediated via p70S6K. Cytochalasin D, an inhibitor of actin filament formation, inhibited the ability of cAMP to stimulate TC uptake and Ntcp translocation. Together, these results suggest that the stimulation of TC uptake and Ntcp translocation by cAMP may be mediated via the PI3K/PKB signaling pathway and requires intact actin filaments.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christian M. Smolko ◽  
Kevin A. Janes

AbstractProtein kinases are enzymes whose abundance, protein-protein interactions, and posttranslational modifications together determine net signaling activity in cells. Large-scale data on cellular kinase activity are limited, because existing assays are cumbersome, poorly sensitive, low throughput, and restricted to measuring one kinase at a time. Here, we surmount the conventional hurdles of activity measurement with a multiplexing approach that leverages the selectivity of individual kinase-substrate pairs. We demonstrate proof of concept by designing an assay that jointly measures activity of five pleiotropic signaling kinases: Akt, IκB kinase (IKK), c-jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK)-extracellular regulated kinase kinase (MEK), and MAPK-activated protein kinase-2 (MK2). The assay operates in a 96-well format and specifically measures endogenous kinase activation with coefficients of variation less than 20%. Multiplex tracking of kinase-substrate pairs reduces input requirements by 25-fold, with ~75 µg of cellular extract sufficient for fiveplex activity profiling. We applied the assay to monitor kinase signaling during coxsackievirus B3 infection of two different host-cell types and identified multiple differences in pathway dynamics and coordination that warrant future study. Because the Akt–IKK–JNK–MEK–MK2 pathways regulate many important cellular functions, the fiveplex assay should find applications in inflammation, environmental-stress, and cancer research.


2008 ◽  
Vol 19 (4) ◽  
pp. 1739-1752 ◽  
Author(s):  
Lu Yu ◽  
Maosong Qi ◽  
Mark A. Sheff ◽  
Elaine A. Elion

Cell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis. The MAPK scaffold Ste5 is initially recruited to the plasma membrane in random patches that polarize before shmoo emergence. Polarized localization of Ste5 is important for shmooing. In fus3 mutants, Ste5 is recruited to significantly more of the plasma membrane, whereas recruitment of Bni1 formin, Cdc24 guanine exchange factor, and Ste20 p21-activated protein kinase are inhibited. In contrast, polarized recruitment still occurs in a far1 mutant that is also defective in G1 arrest. Remarkably, loss of Cln2 or Cdc28 cyclin-dependent kinase restores polarized localization of Bni1, Ste5, and Ste20 to a fus3 mutant. These and other findings suggest Fus3 induces polarized growth in G1 phase cells by down-regulating Ste5 recruitment and by inhibiting Cln/Cdc28 kinase, which prevents basal recruitment of Ste5, Cdc42-mediated asymmetry, and mating morphogenesis.


2003 ◽  
Vol 14 (6) ◽  
pp. 2543-2558 ◽  
Author(s):  
Yunmei Wang ◽  
Elaine A. Elion

The Ste5 scaffold activates an associated mitogen-activated protein kinase cascade by binding through its RING-H2 domain to a Gβγ dimer (Ste4/Ste18) at the plasma membrane in a recruitment event that requires prior nuclear shuttling of Ste5. Genetic evidence suggests that Ste5 must oligomerize to function, but its impact on Ste5 function and localization is unknown. Herein, we show that oligomerization affects Ste5 activity and localization. The majority of Ste5 is monomeric, suggesting that oligomerization is tightly regulated. Increasing the pool of Ste5 oligomers increases association with Ste11. Remarkably, Ste5 oligomers are also more efficiently exported from the nucleus, retained in the cytoplasm by Ste11 and better recruited to the plasma membrane, resulting in constitutive activation of the mating mitogen-activated protein kinase cascade. Coprecipitation tests show that the RING-H2 domain is the key determinant of oligomerization. Mutational analysis suggests that the leucine-rich domain limits the accessibility of the RING-H2 domain and inhibits export and recruitment in addition to promoting Ste11 association and activation. Our results suggest that the major form of Ste5 is an inactive monomer with an inaccessible RING-H2 domain and Ste11 binding site, whereas the active form is an oligomer that is more efficiently exported and recruited and has a more accessible RING-H2 domain and Ste11 binding site.


1994 ◽  
Vol 14 (7) ◽  
pp. 4722-4730 ◽  
Author(s):  
K A Cadwallader ◽  
H Paterson ◽  
S G Macdonald ◽  
J F Hancock

Plasma membrane targeting of Ras requires CAAX motif modifications together with a second signal from an adjacent polybasic domain or nearby cysteine palmitoylation sites. N-terminal myristoylation is known to restore membrane binding to H-ras C186S (C-186 is changed to S), a mutant protein in which all CAAX processing is abolished. We show here that myristoylated H-ras C186S is a substrate for palmitoyltransferase, despite the absence of C-terminal farnesylation, and that palmitoylation is absolutely required for plasma membrane targeting of myristoylated H-ras. Similarly, the polybasic domain is required for specific plasma membrane targeting of myristoylated K-ras. In contrast, the combination of myristoylation plus farnesylation results in the mislocalization of Ras to numerous intracellular membranes. Ras that is only myristoylated does not bind with a high affinity to any membrane. The specific targeting of Ras to the plasma membrane is therefore critically dependent on signals that are contained in the hypervariable domain but can be supported by N-terminal myristoylation or C-terminal prenylation. Interestingly, oncogenic Ras G12V that is localized correctly to the plasma membrane leads to mitogen-activated protein kinase activation irrespective of the combination of targeting signals used for localization, whereas Ras G12V that is mislocalized to the cytosol or to other membranes activates mitogen-activated protein kinase only if the Ras protein is farnesylated.


Sign in / Sign up

Export Citation Format

Share Document