scholarly journals Chromatin dynamics during the differentiation of long-term hematopoietic stem cells to multipotent progenitors

2017 ◽  
Vol 1 (14) ◽  
pp. 887-898 ◽  
Author(s):  
Xiang Yu ◽  
Chao Wu ◽  
Dheeraj Bhavanasi ◽  
Hong Wang ◽  
Brian D. Gregory ◽  
...  

Key Points ATAC-seq provides genome-wide chromatin state in 3 cell types of hematopoietic stem/progenitor cells. Transcription factor cohorts are associated with dynamic changes of open chromatin during the differentiation of LT/ST-HSCs to MPPs.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Maria Rosa Lidonnici ◽  
Giulia Chianella ◽  
Francesca Tiboni ◽  
Matteo Barcella ◽  
Ivan Merelli ◽  
...  

Background Beta-thalassemia (Bthal) is a genetic disorder due to mutations in the ß-globin gene, leading to a reduced or absent production of HbA, which interferes with erythroid cell maturation and limits normal red cell production. Patients are affected by severe anemia, hepatosplenomegaly, and skeletal abnormalities due to rapid expansion of the erythroid compartment in bone marrow (BM) caused by ineffective erythropoiesis. In a classical view of hematopoiesis, the blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. In human, novel purification strategies based on differential expression of CD49f and CD90 enrich for long-term (49f+) and short-term (49f−) repopulating hematopoietic stem cells (HSCs), with distinct cell cycle properties, but similar myeloid (My) and lymphoid (Ly) potential. In this view, it has been proposed that erythroid (Ery) and megakaryocytic (Mk) fates branch off directly from CD90-/49f− multipotent progenitors (MPPs). Recently, a new study suggested that separation between multipotent (Ery/My/Ly) long-term repopulating cells (Subset1, defined as CLEC9AhighCD34low) and cells with only My/Ly and no Ery potential (Subset2, defined as CLEC9AlowCD34high)occurs within the phenotypic HSC/MPP and CD49f+ HSCs compartment. Aims A general perturbed and stress condition is present in the thalassemic BM microenvironment. Since its impact on the hematopoietic cell subpopulations is mostly unknown, we will investigate which model of hematopoiesis/erythropoiesis occurs in Bthal. Moreover, since Beta-Thalassemia is an erythropoietic disorder, it could be considered as a disease model to study the 'erythroid branching' in the hematopoietic hierarchy. Methods We defined by immunophenotype and functional analysis the lineage commitment of most primitive HSC/MPP cells in patients affected by this pathology compared to healthy donors (HDs). Furthermore, in order to delineate the transcriptional networks governing hematopoiesis in Beta-thalassemia, RNAseq analysis was performed on sorted hematopoietic subpopulations from BM of Bthal patients and HDs. By droplet digital PCR on RNA purified from mesenchymal stromal cells of Bthal patients, we evaluated the expression levels of some niche factors involved in the regulation of hematopoiesis and erythropoiesis. Moreover, the protein levels in the BM plasma were analyzed by performing ELISA. Results Differences in the primitive compartment were observed with an increased proportion of multipotent progenitors in Bthal patients compared to HDs. The Subset1 compartment is actually endowed with an enhanced Ery potential. Focusing on progenitors (CD34+ CD38+) and using a new sorting scheme that efficiently resolved My, Ery, and Mk lineage fates, we quantified the new My (CD71-BAH1-/+) and Ery (CD71+ BAH1-/+) subsets and found a reduction of Ery subset in Bthal samples. We can hypothesize that the erythroid-enriched subsets are more prone to differentiate quickly due to the higher sensitivity to Epo stimuli or other bone marrow niche signals. Gene set enrichment analysis, perfomed on RNAseq data, showed that Bthal HSC/MPP presented negative enrichment of several pathways related to stemness and quiescence. Cellular processes involved in erythropoiesis were found altered in Bthal HSC. Moreover, some master erythroid transcription factors involved were overrepresented in Bthal across the hematopoietic cascade. We identified the niche factors which affect molecular pathways and the lineage commitment of Bthal HSCs. Summary/Conclusions Overall, these data indicate that Bthal HSCs are more cycling cells which egress from the quiescent state probably towards an erythroid differentiation, probably in response to a chronic BM stimulation. On the other hand,some evidences support our hypothesis of an 'erythroid branching' already present in the HSC pool, exacerbated by the pathophysiology of the disease. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (7) ◽  
pp. 735-749 ◽  
Author(s):  
Simranpreet Kaur ◽  
Liza J. Raggatt ◽  
Susan M. Millard ◽  
Andy C. Wu ◽  
Lena Batoon ◽  
...  

Key Points Recipient macrophages persist in hematopoietic tissues and self-repopulate via in situ proliferation after syngeneic transplantation. Targeted depletion of recipient CD169+ macrophages after transplant impaired long-term bone marrow engraftment of hematopoietic stem cells.


2018 ◽  
Vol 2 (24) ◽  
pp. 3602-3607 ◽  
Author(s):  
Russell G. Witt ◽  
Bowen Wang ◽  
Quoc-Hung Nguyen ◽  
Carlo Eikani ◽  
Aras N. Mattis ◽  
...  

Key Points Fetal injection of antibodies against the c-Kit receptor and CD47 effectively depletes host HSCs in immunocompetent mice. In utero depletion of host HSCs increases long-term engraftment after neonatal hematopoietic cell transplantation.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2377-2377
Author(s):  
Pengxu Qian ◽  
Youngwook Ahn ◽  
Bony De Kumar ◽  
Christof Nolte ◽  
Xi C. He ◽  
...  

Abstract Hematopoietic stem cells (HSCs) sustain lifelong production of multiple blood cell types through a finely-tuned balance between stem cell maintenance and activation to prevent bone marrow exhaustion or overgrowth. The highly conserved Hox family of homeodomain containing transcription factors have been identified as key regulators and contributors in both normal hematopoiesis and leukemogenesis. Most previous work has focused on individual Hox genes; however, it remains largely unknown whether and how multiple Hox genes in a cluster are regulated and function in hematopoiesis. We initiated a study to perform systematic, high-throughput transcriptome analysis in the following 17 cell types from the bone marrow (BM) of C57BL/6J mice: 4 hematopoietic stem and progenitor cells (CD49blo long-term (LT)-HSC, CD49bhi intermediate-term (IT)-HSC, short-term (ST)-HSC, and MPP); and 4 committed progenitors (CLP, CMP, GMP and MEP); and 9 mature lineage cells (B cell, T cell, NK cell, dendritic cell, monocyte, macrophage, granulocyte, megakaryocyte and nucleated erythrocyte). Intriguingly, as part of a unique fingerprint observed in the most primitive CD49blo LT-HSCs, we detected expression from the Hoxb cluster. Further analysis on all the four Hox clusters revealed that most of the genes from the Hoxb cluster, and not from the other Hox clusters, were predominantly expressed in the CD49blo LT-HSCs. This suggests that they might function as a cluster to maintain CD49blo LT-HSCs. A previous study has shown that one cis -regulatory retinoic acid responsive element (RARE), is conserved among vertebrate species and regulates multiple Hoxb gene expression in central nervous system development. Thus, we asked whether RARE is essential for maintenance of primitive CD49blo LT-HSCs by regulation of Hoxb cluster. To test this hypothesis, we utilized a RAREΔ knockout mouse model and assayed for HSC numbers in BM. We observed that homozygous deletion of RARE led to 2-fold reduction in both the frequency and absolute number of CD49blo LT-HSCs. Functionally, we first conducted limiting dilution, competitive repopulating unit (CRU) assays by transplanting 2.5×104, 7.5×104 or 2×105 of BM cells from RAREΔ mutants and their control littermates, together with 2×105 recipient BM cells derived from the Ptprc mutant strain, into lethally irradiated recipient mice. Our data showed a 2.5-fold decrease in functional HSCs in RAREΔ HSCs (1/20,326) compared to control (1/50,839). To further evaluate the long-term effect of RARE on HSCs, we performed serial BM transplantation and observed a 12.9-fold reduction of reconstitution ability after secondary transplantation. These data indicate that deletion of RARE compromised HSC long-term reconstitution capacity. Collectively, our work provides evidence showing that RARE is essential for maintenance of the primitive HSCs by regulation of Hoxb cluster genes. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (10) ◽  
pp. 1562-1565 ◽  
Author(s):  
Xia Liu ◽  
Hong Zheng ◽  
Wen-Mei Yu ◽  
Todd M. Cooper ◽  
Kevin D. Bunting ◽  
...  

Key Points Treatment with alexidine dihydrochloride, a Ptpmt1 inhibitor, reprograms cellular metabolism and preserves long-term stem cells ex vivo. Inhibition of mitochondrial metabolism by metformin also decreases differentiation and helps maintain stem cells in culture.


2017 ◽  
Author(s):  
Alborz Karimzadeh ◽  
Vanessa Scarfone ◽  
Connie Chao ◽  
Karin Grathwohl ◽  
John W. Fathman ◽  
...  

AbstractHematopoietic stem cells (HSCs) are the self-renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish it from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a, and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, EPCR, can be used to effectively identify and purify HSCs. We introduce a new two-color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist’s toolkit improves the purity of and simplifies isolation of HSCs.Significance StatementThe study of hematopoietic stem cells (HSCs) and their purification for transplantation requires a panel of surface markers that can be used to distinguish HSCs from other cell types. The number of markers necessary to identify HSCs continues to grow, making it increasingly difficult to identify HSCs by flow cytometry. In this study, we identified a combination of two surface markers, CD11a and EPCR, to enrich for HSCs in the mouse bone marrow without the need for additional markers. This simplified panel could aid HSC research by reducing the number of markers necessary to identify and isolate HSCs.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Balyn W Zaro ◽  
Joseph J Noh ◽  
Victoria L Mascetti ◽  
Janos Demeter ◽  
Benson George ◽  
...  

The balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for a healthy blood supply; imbalances underlie hematological diseases. The importance of HSCs and their progenitors have led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of hematopoiesis remains incompletely understood. Here we report a proteomics resource from mass spectrometry of mouse young adult and old adult mouse HSCs, multipotent progenitors and oligopotent progenitors; 12 cell types in total. We validated differential protein levels, including confirmation that Dnmt3a protein levels are undetected in young adult mouse HSCs until forced into cycle. Additionally, through integrating proteomics and RNA-sequencing datasets, we identified a subset of genes with apparent post-transcriptional repression in young adult mouse HSCs. In summary, we report proteomic coverage of young and old mouse HSCs and progenitors, with broader implications for understanding mechanisms for stem cell maintenance, niche interactions and fate determination.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 392-392 ◽  
Author(s):  
Jennifer J. Trowbridge ◽  
Jonathan W. Snow ◽  
Jonghwan Kim ◽  
Stuart H. Orkin

Abstract Abstract 392 DNA methylation is essential for development and plays crucial roles in a variety of biological processes. The DNA methyltransferase Dnmt1 serves to maintain parental cell methylation patterns on daughter DNA strands in mitotic cells, however, the precise role of Dnmt1 in regulation of quiescent adult stem cells is not known. To examine the role of Dnmt1 in adult hematopoietic stem cells (HSCs), we crossed Dnmt1fl/fl mice with Mx1-Cre transgenic mice, and by injection of poly(I)-poly(C) we selectively deleted Dnmt1 in the hematopoietic system (Dnmt1Δ/Δ). In Dnmt1Δ/Δ mice, peripheral blood counts and mature multilineage composition of the bone marrow was found to be normal. Interestingly, specific defects were observed in Dnmt1Δ/Δ HSC self-renewal as assessed by long-term and secondary competitive transplantation, in retention of Dnmt1Δ/Δ HSCs within the bone marrow niche, and in the ability of Dnmt1Δ/Δ HSCs to give rise to multilineage hematopoiesis. Loss of Dnmt1 also had unique impact on myeloid progenitor cells (including common myeloid progenitors, granulocyte-macrophage progenitors, and megakaryocyte-erythrocyte progenitors), regulating their cycling and transcriptional lineage fidelity. To determine the molecular mechanisms underlying these defects, we performed global gene expression microarray analysis and bisulfite sequencing of select loci (IAP, Car1, and Gata1) in purified populations of control and Dnmt1Δ/Δ long-term HSCs, short-term HSCs/multipotent progenitor cells, and myeloid restricted progenitor cells. Through this approach, we demonstrate that loss of Dnmt1 has cell type-specific molecular consequences. For example, demethylation of the Car1 and Gata1 loci in Dnmt1Δ/Δ long-term HSCs is not sufficient to activate gene transcription, whereas demethylation of these genes in Dnmt1Δ/Δ short-term HSCs is associated with activation of transcription. In Dnmt1Δ/Δ myeloid restricted progenitor cells, we observed increases in DNA methylation at specific gene loci such as Car1, indicating that methylation can be established by other methyltransferases in the absence of Dnmt1. Our global gene expression microarray analysis clearly demonstrates that Dnmt1 regulates expression of distinct gene families in these closely related, primitive hematopoietic populations. We were unable to attribute specific functional defects in Dnmt1Δ/Δ hematopoietic stem and progenitor cells to alterations in expression of previously characterized genes, supporting the existence of novel, uncharacterized regulators of HSC and progenitor cell function to be explored from candidates in our data set. We conclude that maintenance methylation induced by Dnmt1 appears to be especially important for HSC and progenitor cell state transitions, such as the stepwise differentiation of long-term HSCs to multipotent progenitors, multipotent progenitors to myeloid restricted progenitors, stem cell mobilization, and regulating cell cycle entry. These findings establish a unique and critical role for Dnmt1 in the primitive hematopoietic compartment. Furthermore, our evidence suggests that epigenetic regulation, at least with respect to DNA methylation, of adult stem cells is distinct from embryonic stem cells and other somatic cell types. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (4) ◽  
pp. 619-628 ◽  
Author(s):  
Hamza Celik ◽  
Cates Mallaney ◽  
Alok Kothari ◽  
Elizabeth L. Ostrander ◽  
Elizabeth Eultgen ◽  
...  

Key Points Dnmt3a-null hematopoietic stem cells (HSCs) cannot sustain long-term hematopoiesis. Cooperating c-Kit mutations drive leukemic transformation of Dnmt3a-null HSCs.


Sign in / Sign up

Export Citation Format

Share Document