scholarly journals CRISPR genome editing of murine hematopoietic stem cells to create Npm1-Alk causes ALK+ lymphoma after transplantation

2019 ◽  
Vol 3 (12) ◽  
pp. 1788-1794 ◽  
Author(s):  
Soumya Sundara Rajan ◽  
Lingxiao Li ◽  
Mercedes F. Kweh ◽  
Kranthi Kunkalla ◽  
Amit Dipak Amin ◽  
...  

Key Points CRISPR/Cas9 genomic editing of wild-type hematopoietic stem cells generates Npm1-Alk, leading to ALK+ large-cell lymphomas in recipients. CD30+ postthymic T-cell lymphomas are polyclonal but transplantable to secondary recipients with long latency.

2018 ◽  
Vol 2 (4) ◽  
pp. 390-400 ◽  
Author(s):  
J. Luis Espinoza ◽  
Mahmoud I. Elbadry ◽  
Kazuhisa Chonabayashi ◽  
Yoshinori Yoshida ◽  
Takamasa Katagiri ◽  
...  

Key Points HLA-lacking iPSC-derived HSCs from aplastic anemia patients show a hematopoietic ability similar to wild-type iPSC-HSCs. iPSC-HSCs that lack HLA-B4002 escape specific T-cell attack.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 779-779
Author(s):  
Soumya Sundara Rajan ◽  
Lingxiao Li ◽  
Kranthi Kunkalla ◽  
Amit Dipak Amin ◽  
Nitin Agarwal ◽  
...  

Abstract Chromosomal rearrangements resulting in generation of novel fusion oncogenes are common in hematologic malignancies. These disease drivers are key therapeutic targets and form the basis of animal model development for preclinical studies. For example, retroviral introduction of the chronic myeloid leukemia (CML) fusion BCR-ABL to hematopoietic stem cells (HSCs) results in a myeloproliferative disease similar to accelerated-phase human CML when transplanted to recipient mice. This model and many others are established traditionally through retroviral or germline introduction of human fusion oncogenes to the murine genome. Recent advances in CRISPR/Cas9 technology now permit direct editing of the murine genome to create endogenous genotypes that more accurately reflect configurations found in human diseases. To date, these techniques have not been successfully applied to the modeling of fusion oncogene-driven hematologic malignancies. Anaplastic Large Cell lymphoma (ALCL) is a T-cell non-Hodgkin lymphoma common in adolescents and young adults and driven in ~70% of cases by chromosomal rearrangements involving Anaplastic Lymphoma Kinase (ALK). Most commonly, t(2:5; p23:q35) fuses the 3' ALK kinase domain to the 5' oligomerization domain of the constitutively expressed Nucleophosmin1 (NPM1) gene. An existing immunocompetent model of ALK+ lymphoma employs a CD4 promoter-driven NPM1-ALK transgene but results in immature T-lymphomas in about two-thirds and B-lineage plasma-cell lymphomas in the rest of animals. We employed CRISPR/Cas9 vectors containing guide strands designed to generate double-stranded DNA cleavage in mouse chromosomes 11 and 17 at breakpoints predicted to generate an in-frame Npm1-Alk fusion oncogene. Wild-type HSCs derived from fetal livers were divided and subjected to either transient CRISPR or mock transfection during a brief ex vivo passage followed by immediate transplantation to sub-lethally irradiated wild-type recipients. Mice initially transplanted with CRISPR-modified HSCs developed an ALK+ large cell lymphoma with a latency of ~9 months, while mock transfected controls sacrificed in parallel were phenotypically normal. qPCR analysis of lymphoid organs from mice that developed disease showed extremely high expression of Alk and Tnfrsf8, which encodes CD30. Pathologically, tumors contained large malignancy T cells with anaplastic morphology. Immunohistochemistry confirmed ALK protein expression, including nuclear localization classic for NPM1-ALK, and intense CD30 cell-surface staining. One recipient instead developed a CD30-negative ALK+ diffuse large B-cell lymphoma. Transplantation of primary T-lymphoma cells to secondary recipients resulted also in ALK+ T-cell lymphomas in recipients with more rapid onset infiltrating lymph nodes, spleen, liver, and other organs. T-cell receptor clonality analyses through β-chain deep sequencing show an oligoclonal T-cell disease in both primary and secondary recipients. We therefore demonstrate successful genomic editing of transplantable murine hematopoietic stem cells to generate a novel model of a fusion oncogene-driven hematologic malignancy. These methods are widely applicable to additional lymphomas and leukemias and could fuel development of improved in vivo preclinical model systems. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (4) ◽  
pp. 629-638 ◽  
Author(s):  
Allison Mayle ◽  
Liubin Yang ◽  
Benjamin Rodriguez ◽  
Ting Zhou ◽  
Edmund Chang ◽  
...  

Key Points Dnmt3a ablation in HSCs predisposes mice to develop a spectrum of myeloid and lymphoid malignancies. Dnmt3a-KO-derived myeloid malignancies and T-cell acute lymphocytic leukemia/lymphoma show distinct methylation aberrations.


Blood ◽  
2015 ◽  
Vol 125 (24) ◽  
pp. 3731-3746 ◽  
Author(s):  
Taeko Wada ◽  
Daisuke Koyama ◽  
Jiro Kikuchi ◽  
Hiroaki Honda ◽  
Yusuke Furukawa

Key Points LSD1 is barely expressed in normal hematopoietic stem cells, but is overexpressed in leukemias especially those of a T-cell origin. LSD1 overexpression forms preleukemic stem cells with an increased self-renewal potential in a transgenic mice model.


2020 ◽  
Vol 88 ◽  
pp. S51
Author(s):  
Victoria Sun ◽  
Amelie Montel-Hagen ◽  
David Casero ◽  
Steven Tsai ◽  
Alexandre Zampieri ◽  
...  

Author(s):  
Koichi Akashi ◽  
Motonari Kondo ◽  
Annette M. Schlageter ◽  
Irving L. Weissman

Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1189-1197 ◽  
Author(s):  
Hua Tang ◽  
Zhenhong Guo ◽  
Minghui Zhang ◽  
Jianli Wang ◽  
Guoyou Chen ◽  
...  

Abstract Regulatory dendritic cells (DCs) have been reported recently, but their origin is poorly understood. Our previous study demonstrated that splenic stroma can drive mature DCs to proliferate and differentiate into regulatory DCs, and their natural counterpart with similar regulatory function in normal spleens has been identified. Considering that the spleen microenvironment supports hematopoiesis and that hematopoietic stem cells (HSCs) are found in spleens of adult mice, we wondered whether splenic microenvironment could differentiate HSCs into regulatory DCs. In this report, we demonstrate that endothelial splenic stroma induce HSCs to differentiate into a distinct regulatory DC subset with high expression of CD11b but low expression of Ia. CD11bhiIalo DCs secreting high levels of TGF-β, IL-10, and NO can suppress T-cell proliferation both in vitro and in vivo. Furthermore, CD11bhiIalo DCs have the ability to potently suppress allo-DTH in vivo, indicating their preventive or therapeutic perspectives for some immunologic disorders. The inhibitory function of CD11bhiIalo DCs is mediated through NO but not through induction of regulatory T (Treg) cells or T-cell anergy. IL-10, which is secreted by endothelial splenic stroma, plays a critical role in the differentiation of the regulatory CD11bhiIalo DCs from HSCs. These results suggest that splenic microenvironment may physiologically induce regulatory DC differentiation in situ.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4640-4640
Author(s):  
Heng-Yi Liu ◽  
Nezia Rahman ◽  
Tzu-Ting Chiou ◽  
Satiro N. De Oliveira

Background: Chemotherapy-refractory or recurrent B-lineage leukemias and lymphomas yield less than 50% of chance of cure. Therapy with autologous T-cells expressing chimeric antigen receptors (CAR) have led to complete remissions, but the effector cells may not persist, limiting clinical efficacy. Our hypothesis is the modification of hematopoietic stem cells (HSC) with anti-CD19 CAR will lead to persistent generation of multilineage target-specific immune cells, enhancing graft-versus-cancer activity and leading to development of immunological memory. Design/Methods: We generated second-generation CD28- and 4-1BB-costimulated CD19-specific CAR constructs using third-generation lentiviral vectors for modification of human HSC for assessment in vivo in NSG mice engrafted neonatally with human CD34-positive cells. Cells were harvested from bone marrows, spleens, thymus and peripheral blood at different time points for evaluation by flow cytometry and ddPCR for vector copy numbers. Cohorts of mice received tumor challenge with subcutaneous injection of lymphoma cell lines. Results: Gene modification of HSC with CD19-specific CAR did not impair differentiation or proliferation in humanized mice, leading to CAR-expressing cell progeny in myeloid, NK and T-cells. Humanized NSG engrafted with CAR-modified HSC presented similar humanization rates to non-modified HSC, with multilineage CAR-expressing cells present in all tissues with stable levels up to 44 weeks post-transplant. No animals engrafted with CAR-modified HSC presented autoimmunity or inflammation. T-cell populations were identified at higher rates in humanized mice with CAR-modified HSC in comparison to mice engrafted with non-modified HSC. CAR-modified HSC led to development of T-cell effector memory and T-cell central memory phenotypes, confirming the development of long-lasting phenotypes due to directed antigen specificity. Mice engrafted with CAR-modified HSC successfully presented tumor growth inhibition and survival advantage at tumor challenge with lymphoma cell lines, with no difference between both constructs (62.5% survival for CD28-costimulated CAR and 66.6% for 41BB-costimulated CAR). In mice sacrificed due to tumor development, survival post-tumor injection was directly correlated with tumor infiltration by CAR T-cells. Conclusions: CAR modification of human HSC for cancer immunotherapy is feasible and continuously generates CAR-bearing cells in multiple lineages of immune cells. Targeting of different malignancies can be achieved by adjusting target specificity, and this approach can augment the anti-lymphoma activity in autologous HSC recipients. It bears decreased morbidity and mortality and offers alternative therapeutic approach for patients with no available sources for allogeneic transplantation, benefiting ethnic minorities. Disclosures De Oliveira: National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London: Research Funding; NIAID, NHI: Research Funding; Medical Research Council: Research Funding; CIRM: Research Funding; National Gene Vector Repository: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document