scholarly journals Daily light-and-darkness onset regulates mouse hematopoietic stem cells

2019 ◽  
Vol 3 (4) ◽  
pp. 704-704
Author(s):  
Karin Golan ◽  
Tsvee Lapidot

Abstract In this issue’s Blood Advances Talk, Lapidot and Golan discuss how changes in daily light regulate hematopoiesis. This fascinating mechanism helps control the process of maintaining the hematopoietic stem cell pool while promoting sufficient differentiation to supply adequate numbers of functional blood cells. We hope you enjoy listening to this interesting topic. 

Blood ◽  
2019 ◽  
Vol 133 (18) ◽  
pp. 1943-1952 ◽  
Author(s):  
Marie-Dominique Filippi ◽  
Saghi Ghaffari

Abstract The hematopoietic system produces new blood cells throughout life. Mature blood cells all derived from a pool of rare long-lived hematopoietic stem cells (HSCs) that are mostly quiescent but occasionally divide and self-renew to maintain the stem cell pool and to insure the continuous replenishment of blood cells. Mitochondria have recently emerged as critical not only for HSC differentiation and commitment but also for HSC homeostasis. Mitochondria are dynamic organelles that orchestrate a number of fundamental metabolic and signaling processes, producing most of the cellular energy via oxidative phosphorylation. HSCs have a relatively high amount of mitochondria that are mostly inactive. Here, we review recent advances in our understanding of the role of mitochondria in HSC homeostasis and discuss, among other topics, how mitochondrial dynamism and quality control might be implicated in HSC fate, self-renewal, and regenerative potential.


2005 ◽  
Vol 33 (5) ◽  
pp. 592-596 ◽  
Author(s):  
Jonas Larsson ◽  
Ulrika Blank ◽  
Jenny Klintman ◽  
Mattias Magnusson ◽  
Stefan Karlsson

Cell Reports ◽  
2017 ◽  
Vol 21 (12) ◽  
pp. 3514-3523 ◽  
Author(s):  
Karolina Komorowska ◽  
Alexander Doyle ◽  
Martin Wahlestedt ◽  
Agatheeswaran Subramaniam ◽  
Shubhranshu Debnath ◽  
...  

2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


Blood ◽  
2014 ◽  
Vol 124 (10) ◽  
pp. 1622-1625 ◽  
Author(s):  
Serine Avagyan ◽  
Michael Churchill ◽  
Kenta Yamamoto ◽  
Jennifer L. Crowe ◽  
Chen Li ◽  
...  

Key Points XLF-deficient mice recapitulate the lymphocytopenia of XLF-deficient patients. Premature aging of hematopoietic stem cells underlies the severe and progressive lymphocytopenia in XLF-deficient mice.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2330-2330
Author(s):  
Stefanie Kreutmair ◽  
Anna Lena Illert ◽  
Rouzanna Istvanffy ◽  
Melanie Sickinger ◽  
Christina Eckl ◽  
...  

Abstract Abstract 2330 Hematopoietic stem cells (HSCs) are characterized by their ability to self-renewal and multilineage differentiation. Since mostly HSCs exist in a quiescent state re-entry into cell cycle is essential for their regeneration and differentiation and the expression of numerous cell cycle regulators must be tightly controlled. We previously characterized NIPA (Nuclear Interaction Partner of ALK) as a F-Box protein that defines an oscillating ubiquitin E3 ligase targeting nuclear cyclin B1 in interphase thus contributing to the timing of mitotic entry. To examine the function of NIPA on vivo, we generated NIPA deficient animals, which are viable but sterile due to a defect in recombination and testis stem cell maintenance. To further characterize the role of NIPA in stem cell maintenance and self-renewal we investigated hematopoiesis in NIPA deficient animals. Peripheral blood counts taken at different ages revealed no apparent difference between NIPA knockout and wild type mice in numbers and differentiation. In contrast, looking at the hematopoietic stem cell pool, FACS analyses of bone marrow showed significantly decreased numbers of Lin-Sca1+cKit+ (LSK) cells in NIPA deficient animals, where LSKs were reduced to 40% of wild type littermates (p=0,0171). This effect was only apparent in older animals, where physiologically higher LSK numbers have to compensate for the exhaustion of the stem cell pool. Additionally, older NIPA deficient mice have only half the amount of multi myeloid progenitors (MMPs) in contrast to wild type animals. To examine efficient activation of stem cells to self-renew in response to myeloid depression, we treated young and old mice with the cytotoxic drug (5-FU) four days before bone marrow harvest. As expected, 5-FU activated hematopoietic progenitors in wild type animals, whereas NIPA deficient progenitors failed to compensate to 5-FU depression, e.g. LSKs of NIPA knockout mice were reduced to 50% of wild type levels (p<0.001), CD150+CD34+ Nipa deficient cells to 20% of wild type levels (p<0.0001). Interestingly, these effects were seen in all NIPA deficient animals independent of age, allowing us to trigger the self-renewal phenotype by activating the hematopoietic stem cell pool. Using competitive bone marrow transplantation assays, CD45.2 positive NIPA deficient or NIPA wild type bone marrow cells were mixed with CD45.1 positive wild type bone marrow cells and transplanted into lethally irradiated CD45.2 positive recipient mice. Thirty days after transplantation, FACS analysis of peripheral blood and bone marrow showed reduced numbers of NIPA knockout cells in comparison to NIPA wild type bone marrow recipient mice. This result was even more severe with aging of transplanted mice, where NIPA deficient cells were reduced to less than 10% of the level of wild type cells in bone marrow of sacrificed mice 6 months after transplantation, pointing to a profound defect in repopulation capacity of NIPA deficient HSCs. Taken together our results demonstrate a unique and critical role of NIPA in regulating the primitive hematopoietic compartment as a regulator of self-renewal, cycle capacity and HSC expansion. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2231-2234 ◽  
Author(s):  
Daisuke Imanishi ◽  
Yasushi Miyazaki ◽  
Reishi Yamasaki ◽  
Yasushi Sawayama ◽  
Jun Taguchi ◽  
...  

To examine whether donor-derived cells could exist in nonhematopoietic tissues of recipients after allogeneic hematopoietic stem-cell transplantation, we examined the patterns of the short tandem repeat (STR) of DNA extracted from fingernail clippings of recipients so that the contamination of blood cells was excluded. All 21 patients reached donor-derived hematopoiesis after transplantation and 20 of them were in remission of the primary diseases at the time of sampling. Compared with the STRs of donor cells, among 9 of 21 patients, DNA extracted from fingernail samples showed coexistence of the donor pattern of the STRs, sharing from 8.9% to 72.9% of total STR areas. Time from transplantation to sampling was from 305 to 2399 days among positive cases. These results demonstrate for the first time the existence of stable contribution of donor cells in fingernails among recipients of allogeneic hematopoietic stem cells.


Blood ◽  
2015 ◽  
Vol 125 (12) ◽  
pp. 1890-1900 ◽  
Author(s):  
Sarah A. Kinkel ◽  
Roman Galeev ◽  
Christoffer Flensburg ◽  
Andrew Keniry ◽  
Kelsey Breslin ◽  
...  

Key Points Depletion of Jarid2 in mouse and human hematopoietic stem cells enhances their activity. Jarid2 acts as part of PRC2 in hematopoietic stem and progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document