scholarly journals Public and private human T-cell clones respond differentially to HCMV antigen when boosted by CD3 copotentiation

2020 ◽  
Vol 4 (21) ◽  
pp. 5343-5356
Author(s):  
Laura R. E. Becher ◽  
Wendy K. Nevala ◽  
Shari Lee Sutor ◽  
Megan Abergel ◽  
Michele M. Hoffmann ◽  
...  

Abstract Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(−) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.

2020 ◽  
Author(s):  
Laura R.E. Becher ◽  
Wendy K. Nevala ◽  
Shari S. Sutor ◽  
Megan Abergel ◽  
Michele M. Hoffmann ◽  
...  

AbstractHuman cytomegalovirus (HCMV) induces long-lasting T cell immune responses that control but do not clear infection. Typical responses involve private T cell clones, expressing T cell antigen receptors (TCR) unique to a person, and also public T cell clones with identical TCRs active in different people. Here, we report the development of a pre-therapeutic immunostimulation modality against HCMV for human T cells, CD3 co-potentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 co-potentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was co-engaged with antigen. When applied in recall assays, CD3 co-potentiation enhanced the expansion of both public and private T cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLV peptide from HCMV pp65 protein. Interestingly, public versus private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmaco-immunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 co-potentiation of T cell clones from HLA-A2(-) donors and one HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T cell copotentiation can increase the expansion of different classes of T cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.Key PointsHuman CD3 co-potentiation can enhance the clonal expansion of several classes of recall T cells responding to antigens.Enhanced expansion follows a unique pattern based on the immunodominance or weakness of antigen, and public or private TCR status.


1989 ◽  
Vol 170 (6) ◽  
pp. 2147-2152 ◽  
Author(s):  
S A Brod ◽  
C E Rudd ◽  
M Purvee ◽  
D A Hafler

Whether the expression of higher molecular weight isoforms of the T-200 complex represents different lineages of T cells and/or a sequential stage of the differential pathway of T cells has been unclear. Understanding T cell expression of higher molecular weight isoforms of the T-200 complex (CD45R) may be important because of their association with regulation of immune responses. By direct single cell cloning, we observed a number of long-term T cell clones that expressed CD45RA (2H4). CD45RA expression could be further regulated by ionomycin or the cytokines IL-1 and IL-6, but not IL-2, IL-4, or IFN-gamma. These results indicate that CD45RA expression may define T cell lineages of activated T cells partially controlled by the cytokines IL-1 and IL-6. Further, these results may associate regulatory actions of IL-1 and IL-6 with their ability to increase CD45RA expression in subpopulations of human T cells.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3303-3314 ◽  
Author(s):  
J.H. Richardson ◽  
P. Höllsberg ◽  
A. Windhagen ◽  
L.A. Child ◽  
D.A. Hafler ◽  
...  

Abstract Human T-cell leukemia virus type I (HTLV-I)-infected T cells expanded in vitro by single-cell cloning provide a unique system for investigating virus-cell interactions in nonimmortalized T cells. By analysis of clones generated randomly from the blood of virus carriers, we confirm that CD4 T cells are the major reservoir of HTLV-I in vivo and show that most infected cells contain a single integrated provirus. Contrary to the situation in HTLV-I immortalized cell lines, the HTLV-I provirus was found to be transcriptionally silent in a high proportion of randomly generated T-cell clones and could not be reactivated by mitogenic stimulation. The spontaneous proliferation previously documented in HTLV-I–infected T-cell clones was not observed in silently infected cells, and therefore correlates directly with the expression of tax and other viral genes. The only cytokine mRNA found to be significantly elevated in the virus-producing clones was interleukin-6; however, receptor-blocking experiments argue against a role for IL-6 in the virus-induced cell proliferation. We observed a striking variation in the ability of individual HTLV-I–producing clones to immortalize fresh peripheral blood lymphocytes. This ability did not correlate with the levels of viral mRNA expression, gag p24 production, spontaneous proliferation, or tax-transactivation, possibly suggesting a role for host cell factors as determinants of viral infectivity or immortalization. Studies to elucidate the basis of this phenotypic heterogeneity should enhance our understanding of viral spread and pathogenesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1330-1330
Author(s):  
Sanja Stevanovic ◽  
Bart Nijmeijer ◽  
Marianke LJ Van Schie ◽  
Roelof Willemze ◽  
Marieke Griffioen ◽  
...  

Abstract Abstract 1330 Poster Board I-352 Immunodeficient mice inoculated with human leukemia can be used as a model to investigate Graft-versus-Leukemia (GvL) effects of donor lymphocyte infusions (DLIs). In addition to GvL reactivity, treatment with DLI induces xenogeneic Graft-versus-Host Disease (GvHD) in mice, characterized by pancytopenia and weight loss. In patients treated with DLI for relapsed or residual leukemia after allogeneic stem cell transplantation, immune responses against non-leukemic cells may also cause GvHD. It has been suggested that GvL reactivity and GvHD, which co-develop in vivo, can be separated and that distinct T cells exist with the specific capacity to mediate GvL reactivity or GvHD. Since adoptive T cell transfer models that allow analysis of separation of GvL and GvHD are rare, we aimed to establish whether GvL reactivity and xenogeneic GvHD could be separated using our model of human leukemia-engrafted NOD/scid mouse after treatment with human donor T cells. In this study, non-conditioned NOD/scid mice engrafted with primary human acute lymphoblastic leukemic cells were treated with CD3+ DLI. Established tumors were effectively eliminated by emerging human T cells, but also induced xenogeneic GvHD. Flowcytometric analysis demonstrated that the majority of emerging CD8+ and CD4+ T cells were activated (HLA-DR+) and expressed an effector memory phenotype (CD45RA-CD45RO+CCR7-). To investigate whether GvL reactivity and xenogeneic GvHD were mediated by the same T cells showing reactivity against both human leukemic and murine cells, or displaying distinct reactivity against human leukemic and murine cells, we clonally isolated and characterized the T cells during the GvL response and xenogeneic GvHD. T cell clones were analyzed for reactivity against primary human leukemic cells and primary NOD/scid hematopoietic (BM and spleen cells) and non-hematopoietic (skin fibroblasts) cells in IFN-g ELISA. Isolated CD8+ and CD4+ T cell clones were shown to recognize either human leukemic or murine cells, indicating that GvL response and xenogeneic GvHD were mediated by different human T cells. Flowcytometric analysis demonstrated that all BM and spleen cells expressed MHC class I, whereas only 1-3 % of the cells were MHC class II +. Primary skin fibroblasts displayed low MHC class I and completely lacked MHC class II expression. Xeno-reactive CD8+ T cell clones were shown to recognize all MHC class I + target cells and xeno-reactive CD4+ T cells clones displayed reactivity only against MHC class II + target cells. To determine the MHC restriction of xeno-reactive T cell clones, NOD/scid bone marrow (BM) derived dendritic cells (DC) expressing high levels of murine MHC class I and class II were tested for T cell recognition in the presence or absence of murine MHC class I and class II monoclonal antibodies in IFN-g ELISA. Xeno-reactive CD8+ T cell clones were shown to be MHC class I (H-2Kd or H-2Db) restricted, whereas xeno-reactive CD4+ T cell clones were MHC class II (I-Ag7) restricted, indicating that xeno-reactivity reflects genuine human T cell response directed against allo-antigens present on murine cells. Despite production of high levels of IFN-gamma, xeno-reactive CD8+ and CD4+ T cell clones failed to exert cytolytic activity against murine DC, as determined in a 51Cr-release cytotoxicity assay. Absence of cytolysis by CD8+ T cell clones, which are generally considered as potent effector cells, may be explained by low avidity interaction between human T cells and murine DC, since flowcytometric analysis revealed sub-optimal activation of T cells as measured by CD137 expression and T cell receptor downregulation upon co-culture with murine DC, and therefore these results indicate that xenogeneic GvHD in this model is likely to be mediated by cytokines. In conclusion, in leukemia-engrafted NOD/scid mice treated with CD3+ DLI, we show that GvL reactivity and xenogeneic GvHD are mediated by separate human T cells with distinct specificities. All xeno-reactive T cell clones showed genuine recognition of MHC class I or class II associated allo-antigens on murine cells similar as GvHD-inducing human T cells. These data suggest that our NOD/scid mouse model of human acute leukemia may be valuable for studying the effectiveness and specificity of selectively enriched or depleted T cells for adoptive immunotherapy. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 90 (23) ◽  
pp. 11049-11053 ◽  
Author(s):  
F Weber ◽  
E Meinl ◽  
K Drexler ◽  
A Czlonkowska ◽  
S Huber ◽  
...  

Herpesvirus saimiri has recently been shown to immortalize human T cells. It was unknown, however, whether Herpesvirus saimiri transformation affects T-cell receptor (TCR) expression and signal transduction. In the present study, we have transformed CD4+ human T-cell clones specific for human myelin basic protein. The transformed T cells were grown in interleukin 2 and divided in the absence of antigen and antigen-presenting cells. They retained the membrane phenotype of activated T cells and secreted the cytokines interferon gamma and lymphotoxin, but interleukin 4 was not detected. Further, the transformed T cells continued to express the original TCR as demonstrated by TCR variable-region-V beta-specific monoclonal antibodies and TCR sequencing. Antigen-specific recognition and signal transduction by the TCR were demonstrated by myelin-basic-protein-induced HLA-DR-restricted secretion of interferon gamma and lymphotoxin and by myelin-basic-protein-specific proliferation. Antigen specificity and reactivity have been maintained for > 1 year after transformation. Transformation with Herpesvirus saimiri now allows the production of virtually unlimited numbers of (auto)antigen-specific T cells expressing functional TCR and a stable membrane phenotype. This technology will facilitate studies of the pathogenesis of putative autoimmune diseases, such as multiple sclerosis, and may be of help in TCR-targeted immunotherapy.


1994 ◽  
Vol 179 (1) ◽  
pp. 279-290 ◽  
Author(s):  
K W Wucherpfennig ◽  
A Sette ◽  
S Southwood ◽  
C Oseroff ◽  
M Matsui ◽  
...  

Immunodominant T cell epitopes of myelin basic protein (MBP) may be target antigens for major histocompatibility complex class II-restricted, autoreactive T cells in multiple sclerosis (MS). Since susceptibility to MS is associated with the DR2 haplotype, the binding and presentation of the immunodominant MBP(84-102) peptide by DR2 antigens were examined. The immunodominant MBP(84-102) peptide was found to bind with high affinity to DRB1*1501 and DRB5*0101 molecules of the disease-associated DR2 haplotype. Overlapping but distinct peptide segments were critical for binding to these molecules; hydrophobic residues (Val189 and Phe92) in the MBP(88-95) segment were critical for peptide binding to DRB1*1501 molecules, whereas hydrophobic and charged residues (Phe92, Lys93) in the MBP(89-101/102) sequence contributed to DRB5*0101 binding. The different registers for peptide binding made different peptide side chains available for interaction with the T cell receptor. Although the peptide was bound with high affinity by both DRB1 and DRB5 molecules, only DRB1 (DRB1*1501 and 1602) but not DRB5 molecules served as restriction elements for a panel of T cell clones generated from two MS patients suggesting that the complex of MBP(84-102) and DRB1 molecules is more immunogenic for MBP reactive T cells. The minimal MBP peptide epitope for several T cell clones and the residues important for binding to DRB1*1501 molecules and for T cell stimulation have been defined.


2001 ◽  
Vol 8 (5) ◽  
pp. 984-992 ◽  
Author(s):  
Emilia L. Oleszak ◽  
Wan Lu Lin ◽  
Agustin Legido ◽  
Joseph Melvin ◽  
Huntley Hardison ◽  
...  

ABSTRACT We have investigated the clonality of β-chain T-cell receptor (TCR) transcripts from the cerebrospinal fluid (CSF) and peripheral blood from a 7-year old child who developed a multiphasic disseminated encephalomyelitis following an infection with hepatitis A virus. We amplified β-chain TCR transcripts by nonpalindromic adaptor (NPA)-PCR–Vβ-specific PCR. TCR transcripts from only five Vβ families (Vβ13, Vβ3, Vβ17, Vβ8, and Vβ20) were detected in CSF. The amplified products were combined, cloned, and sequenced. Sequence analysis revealed in the CSF substantial proportions of identical β-chain of TCR transcripts, demonstrating oligoclonal populations of T cells. Seventeen of 35 (48%) transcripts were 100% identical, demonstrating a major Vβ13.3 Dβ2.1 Jβ1.3 clonal expansion. Six of 35 (17%) transcripts were also 100% identical, revealing a second Vβ13 clonal expansion (Vβ13.1 Dβ2.1 Jβ1.2). Clonal expansions were also found within the Vβ3 family (transcript Vβ3.1 Dβ2.1 Jβ1.5 accounted for 5 of 35 transcripts [14%]) and within the Vβ20 family (transcript Vβ20.1 Dβ1.1 Jβ2.4 accounted for 3 of 35 transcripts [8%]). These results demonstrate the presence of T-cell oligoclonal expansions in the CSF of this patient following infection with hepatitis A virus. Analysis of the CDR3 motifs revealed that two of the clonally expanded T-cell clones exhibited substantial homology to myelin basic protein-reactive T-cell clones. In contrast, all Vβ TCR families were expressed in peripheral blood lymphocytes. Oligoclonal expansions of T cells were not detected in the peripheral blood of this patient. It remains to be determined whether these clonally expanded T cells are specific for hepatitis A viral antigen(s) or host central nervous system antigen(s) and whether molecular mimicry between hepatitis A viral protein and a host protein is responsible for demyelinating disease in this patient.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2891-2900 ◽  
Author(s):  
Akio Mori ◽  
Osamu Kaminuma ◽  
Matsunobu Suko ◽  
Satoshi Inoue ◽  
Takeo Ohmura ◽  
...  

Abstract Glucocorticoids (GC) have long been used as the most effective agents for the treatment of allergic diseases accompanied by eosinophilia such as chronic asthma and atopic dermatitis. The development of chronic eosinophilic inflammation is dependent on interleukin-5 (IL-5), a selective eosinophil-activating factor, produced by helper T cells. To delineate the regulatory mechanisms of human IL-5 synthesis, we established allergen-specific CD4+ T-cell clones from asthmatic patients. GC efficiently suppressed IL-5 synthesis of T-cell clones activated via either T-cell receptor (TCR) or IL-2 receptor (IL-2R). Induction of IL-5 mRNA upon TCR and IL-2R stimulation was totally inhibited by dexamethasone. Human IL-5 promoter/enhancer-luciferase gene construct transfected to T-cell clones was transcribed on either TCR or IL-2R stimulation and was clearly downregulated by dexamethasone, indicating that the approximately 500-bp human IL-5 gene segment located 5′ upstream of the coding region contains activation-inducible enhancer elements responsible for the regulation by GC. Electrophoretic mobility shift assay analysis suggested that AP-1 and NF-κB are among the possible targets of GC actions on TCR-stimulated T cells. NF-AT and NF-κB were not significantly induced by IL-2 stimulation. Our results showing that GC suppressed IL-5 production by human CD4+ T cells activated by two distinct stimuli, TCR and IL-2R stimulation, underscore the efficacy of GC in the treatment of allergic diseases via suppression of T-cell IL-5 synthesis.


Sign in / Sign up

Export Citation Format

Share Document