scholarly journals No relevant pharmacokinetic drug–drug interaction between nintedanib and pirfenidone

2018 ◽  
Vol 53 (1) ◽  
pp. 1801060 ◽  
Author(s):  
Luca Richeldi ◽  
Sophie Fletcher ◽  
Huzaifa Adamali ◽  
Nazia Chaudhuri ◽  
Sabrina Wiebe ◽  
...  

Nintedanib and pirfenidone are approved treatments for idiopathic pulmonary fibrosis (IPF). This open-label, two-group trial investigated the pharmacokinetic drug–drug interaction between these two drugs in patients with IPF.Subjects not treated with antifibrotics at screening (group 1, n=20) received a single nintedanib dose (150 mg) followed by pirfenidone (titrated to 801 mg thrice daily) for 3 weeks, with a further single nintedanib dose (150 mg) on the last day (day 23). Subjects treated with pirfenidone at screening (group 2, n=17) continued to receive pirfenidone alone (801 mg thrice daily) for 7 days, then co-administered with nintedanib (150 mg twice daily) for a further 7 days, before single doses of both treatments on day 16.In group 1, adjusted geometric mean (gMean) ratios (with/without pirfenidone) were 88.6% and 80.6% for nintedanib area under the plasma concentration–time curve (AUC) and maximum plasma concentration (Cmax), respectively. In group 2, gMean ratios (with/without nintedanib) were 97.2% and 99.5% for pirfenidone AUC and Cmax, respectively. For all parameters, the 90% confidence intervals included 100%, suggesting similar exposure for administration alone and when co-administered. Both treatments were well tolerated.These data indicate there is no relevant pharmacokinetic drug–drug interaction between nintedanib and pirfenidone when co-administered in IPF patients.

2011 ◽  
Vol 55 (11) ◽  
pp. 5172-5177 ◽  
Author(s):  
Bharat Damle ◽  
Manthena V. Varma ◽  
Nolan Wood

ABSTRACTIn clinical practice, antifungal therapy may be switched from fluconazole to voriconazole; such sequential use poses the potential for drug interaction due to cytochrome P450 2C19 (CYP2C19)-mediated inhibition of voriconazole metabolism. This open-label, randomized, two-way crossover study investigated the effect of concomitant fluconazole on voriconazole pharmacokinetics in 10 subjects: 8 extensive metabolizers and 2 poor metabolizers of CYP2C19. The study consisted of 4-day voriconazole-only and 5-day voriconazole-plus-fluconazole treatments, separated by a 14-day washout. Voriconazole pharmacokinetics were determined by noncompartmental analyses. A physiologically based pharmacokinetic model was developed in Simcyp (Simcyp Ltd., Sheffield, United Kingdom) to predict the magnitude of drug interaction should antifungal therapy be switched from fluconazole to voriconazole, following various simulated lag times for the switch. In CYP2C19 extensive metabolizers, fluconazole increased the maximum plasma concentration and the area under the plasma concentration-time curve (AUC) of voriconazole by 57% and 178%, respectively. In poor metabolizers, however, voriconazole pharmacokinetics were unaffected by fluconazole. The simulations based on pharmacokinetic modeling predicted that if voriconazole was started 6, 12, 24, or 36 h after the last dose of fluconazole, the voriconazole AUC ratios (sequential therapy versus voriconazole only) after the first dose would be 1.51, 1.41, 1.28, and 1.14, respectively. This suggests that the remaining systemic fluconazole would result in a marked drug interaction with voriconazole for ≥24 h. Although no safety issues were observed during coadministration, concomitant use of fluconazole and voriconazole is not recommended. Frequent monitoring for voriconazole-related adverse events is advisable if voriconazole is used sequentially after fluconazole.


2021 ◽  
Vol 90 (4) ◽  
pp. 383-390
Author(s):  
Sara T. Elazab ◽  
Nahla S. Elshater ◽  
Ahmed E. Elweza

The pharmacokinetic characteristics of toltrazuril (TZR) and its metabolites toltrazuril sulphoxide (TZR.SO) and toltrazuril sulphone (TZR.SO2) were assessed in non-pregnant and pregnant goats. Ten healthy Baladi female goats were allocated into two groups (n = 5 per group): non-pregnant goats (group 1) and pregnant goats at 2–3 months of gestation (group 2). Toltrazuril was administered once orally to all goats at 20 mg/kg. Plasma samples were collected at 0 (before TZR administration), 0.5, 1, 2, 4, 6, 8, 12, 16, 24, 48, 72 h and 5, 7, 9, 12, 16, 20, 24, 27, 30, and 35 days post therapy to measure the concentrations of TZR and its metabolites. In pregnant goats, the maximum plasma concentration (Cmax), time to reach Cmax (Tmax), and the area under the plasma concentration-time curve from time zero to the last sample (AUC0-last) of TZR were significantly higher (P < 0.05) compared to the non-pregnant ones, whereas the volume of distribution (Vz_F_obs) and clearance (Cl_F_obs) were significantly lower (P < 0.05) in pregnant goats. No significant differences were observed in the elimination half-life (T1/2λz), and mean residence time (MRT) between the two groups. In non-pregnant goats, TZR.SO and TZR.SO2 could be detected in plasma until 12 and 30 days, respectively; whereas in pregnant goats, they were quantified up to 16 and 35 days, respectively. Conclusively, TZR was well absorbed and rapidly metabolized to TZR.SO and TZR.SO2, after oral dosing in goats. Pregnancy caused significant alterations in some of the pharmacokinetic indicators of TZR and its metabolites in goats.


Author(s):  
Mingxiang Liao ◽  
Krzysztof G. Jeziorski ◽  
Monika Tomaszewska-Kiecana ◽  
István Láng ◽  
Marek Jasiówka ◽  
...  

Abstract Purpose This study aimed at evaluating the effect of rucaparib on the pharmacokinetics of rosuvastatin and oral contraceptives in patients with advanced solid tumors and the safety of rucaparib with and without coadministration of rosuvastatin or oral contraceptives. Methods Patients received single doses of oral rosuvastatin 20 mg (Arm A) or oral contraceptives ethinylestradiol 30 µg + levonorgestrel 150 µg (Arm B) on days 1 and 19 and continuous doses of rucaparib 600 mg BID from day 5 to 23. Serial blood samples were collected with and without rucaparib for pharmacokinetic analysis. Results Thirty-six patients (n = 18 each arm) were enrolled and received at least 1 dose of study drug. In the drug–drug interaction analysis (n = 15 each arm), the geometric mean ratio (GMR) of maximum concentration (Cmax) with and without rucaparib was 1.29 for rosuvastatin, 1.09 for ethinylestradiol, and 1.19 for levonorgestrel. GMR of area under the concentration–time curve from time zero to last quantifiable measurement (AUC0–last) was 1.34 for rosuvastatin, 1.43 for ethinylestradiol, and 1.56 for levonorgestrel. There was no increase in frequency of treatment-emergent adverse events (TEAEs) when rucaparib was given with either of the probe drugs. In both arms, most TEAEs were mild in severity and considered unrelated to study treatment. Conclusion Rucaparib 600 mg BID weakly increased the plasma exposure to rosuvastatin or oral contraceptives. Rucaparib safety profile when coadministered with rosuvastatin or oral contraceptives was consistent with that of rucaparib monotherapy. Dose adjustments of rosuvastatin and oral contraceptives are not necessary when coadministered with rucaparib. ClinicalTrials.gov NCT03954366; Date of registration May 17, 2019.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Hsiu-Ling Hsiao ◽  
Michael Greeley ◽  
Parasar Pal ◽  
Thomas Langenickel ◽  
Gangadhar Sunkara ◽  
...  

Objective: LCZ696 is a first-in-class angiotensin receptor neprilysin inhibitor (ARNI) being developed for the treatment of cardiovascular diseases, including hypertension and heart failure. Ingestion of LCZ696 results in systemic exposure to AHU377 (inactive prodrug of LBQ657, a neprilysin inhibitor) and valsartan (angiotensin receptor blocker). Hydrochlorothiazide (HCTZ) is indicated as first line treatment of hypertension. Since LCZ696 and HCTZ may be co-administered for optimal blood pressure control, this study was conducted to evaluate the pharmacokinetic (PK) drug-drug interaction potential between LCZ696 and HCTZ. Methods: An open-label, three-period, single sequence study in 27 healthy subjects was conducted. In Period 1, subjects received oral HCTZ 25 mg qd x 4 days and were discharged for a 4-10 day washout. In Period 2, subjects received LCZ696 400 mg qd x 5 days, and in Period 3, HCTZ 25 mg qd + LCZ696 400 mg qd x 4 days. Serial PK samples were collected and analyzed by a validated LC-MS/MS method. PK parameters (AUCtau,ss,Cmax,ss) of LCZ696 analytes (LBQ657, valsartan) and HCTZ in plasma were determined using non-compartmental analysis, and the results were statisticallyevaluated. Results: The 90% CIs confidence intervals (CIs) for the geometric mean ratio for AUCtau,ss of HCTZ fell within the ( 0.8 - 1.25) range, while those of Cmax,ss (0.74, 0.70-0.78) fell outside the range, indicating Cmax,ss of HCTZ decreased by 26% when co-administered with LCZ696. Those for AUCtau,ss of LBQ657 fell within the range but the upper bound for Cmax,ss (1.19, 1.10-1.28) was outside the range, indicating Cmax of LBQ657 increased by 19%; the upper bound for valsartan exposures(AUCtau,ss: 1.14, 1.00-1.29; Cmax,ss: 1.16, 0.98-1.37) were above the range, indicating AUCtau,ss and Cmax,ss of valsartan increased by 14%and 16%, respectively. Conclusion: When LCZ696 400mg qd and HCTZ 25mg qd were co- administered, AUCtau,ss of HCTZ was unchanged but Cmax,ss decreased by 26%; AUCtau,ss of LBQ657 was unchanged but Cmax,ss increased by 19%; and lastly, AUCtau,ss and Cmax,ss of valsartan increased by 14%and 16%, respectively. LCZ696 400 mg qd was safe and well tolerated in healthy subjects when administered alone and in combination with HCTZ 25 mg qd.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13512-e13512 ◽  
Author(s):  
Arthur P. Staddon ◽  
Trilok V. Parekh ◽  
Roland Elmar Knoblauch ◽  
Chi Keung ◽  
Apexa Bernard ◽  
...  

e13512 Background: Trabectedin (Yondelis; T) is a tetrahydroisoquinoline compound initially isolated from the marine tunicate, Ecteinascidia turbinata, and currently produced synthetically. It is primarily metabolized by the cytochrome P450 (CYP)3A4 enzyme. Thus, potent inducers or inhibitors of this enzyme may alter the plasma concentrations of T. This study assessed the effects of rifampin (R), a strong CYP3A4 inducer, on the pharmacokinetics (PK) and safety of T. Methods: In this 2-way crossover study, patients (≥18 years of age) with locally advanced or metastatic disease were randomized (1:1) to receive one of the 2 treatment sequences: sequence 1: R plus T followed 28 days later by T; sequence 2: T followed 28 days later by R plus T. During each sequence, R (600 mg/day) was administered for 6 consecutive days and T (1.3 mg/m2, IV) was administered over a 3 hour infusion. Dexamethasone (20 mg, IV) was administered before T administration. PK and safety of T were evaluated with and without coadministration of R. Results: Of the 11 enrolled patients, 8 were PK evaluable. Coadministration of R with T decreased mean maximum plasma concentration (Cmax) by approximately 22% and mean area under the plasma concentration-time curve from time 0 to the last quantifiable concentration (AUClast) by approximately 31% (Table 1). Coadministration of R with T also resulted in 23% shorter elimination half-life. Overall, the safety profile of T was comparable when administered alone or with R. Conclusions: In comparison with T alone, coadministration of R resulted in reduced systemic exposure of T in these 8 patients, as measured by Cmax and AUClast. The coadministration of potent inducers of CYP3A4 with T may increase the metabolic clearance of T. Clinical trial information: NCT01273480. [Table: see text]


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Ka Lai Yee ◽  
Rosa I. Sanchez ◽  
Patrice Auger ◽  
Rachael Liu ◽  
Li Fan ◽  
...  

ABSTRACT Doravirine is a novel, potent nonnucleoside reverse transcriptase inhibitor (NNRTI) for the treatment of patients with human immunodeficiency virus type 1 (HIV-1) infection that demonstrates a high genetic barrier to resistance and that has been well tolerated in studies to date. Doravirine is a candidate for patients switching from less-well-tolerated NNRTIs, such as efavirenz. While doravirine is a cytochrome P450 3A4 (CYP3A4) substrate, efavirenz induces CYP3A4; therefore, the pharmacokinetics of both drugs following a switch from efavirenz to doravirine were assessed. This was a 3-period, fixed-sequence, open-label study. Healthy adults were dosed with doravirine at 100 mg for 5 days once daily (QD) (period 1). Following a 7-day washout, efavirenz was administered at 600 mg QD for 14 days (period 2). Subsequently, doravirine was administered at 100 mg QD for 14 days (period 3). Blood samples were collected for pharmacokinetic analyses. Twenty healthy subjects were enrolled, and 17 completed the study. One day after efavirenz cessation, the doravirine area under the concentration-time curve from predosing to 24 h postdosing (AUC0–24), maximum observed plasma concentration (C max), and observed plasma concentration at 24 h postdosing (C 24) were reduced by 62%, 35%, and 85%, respectively, compared with the values with no efavirenz pretreatment. These decreases recovered to 32%, 14%, and 50% for AUC0–24, C max, and C 24, respectively, by day 14 after efavirenz cessation. The doravirine C 24 reached projected therapeutic trough concentrations, based on in vitro efficacy, on day 2 following efavirenz cessation. Geometric mean efavirenz concentrations were 3,180 ng/ml on day 1 and 95.7 ng/ml on day 15, and efavirenz was present at therapeutic concentrations (>1,000 ng/ml) until day 4. Though doravirine exposure was transiently decreased following efavirenz treatment cessation, dose adjustment may not be necessary to maintain therapeutic concentrations of at least one drug during switching in a virologically suppressed population.


2021 ◽  
Author(s):  
Ramesh Boinpally ◽  
Abhijeet Jakate ◽  
Matthew Butler ◽  
Antonia Periclou

Aim: To evaluate pharmacokinetic interactions of atogepant with sumatriptan, an open-label, randomized, crossover study was conducted. Patients & methods: Thirty healthy adults received atogepant 60 mg, sumatriptan 100 mg, or coadministered drugs. Primary end point was geometric mean ratios (GMRs) and 90% CIs of interventions for area under the plasma concentration–time curve from time 0 to t (AUC0-t) or infinity (AUC0-∞) and peak plasma concentration (Cmax). Results: Atogepant GMRs for AUC0-t and AUC0-∞ versus with sumatriptan were within 90% CI 0.80–1.25, indicating no interaction; atogepant Cmax was reduced by 22% (GMR: 0.78; 90% CI: 0.69–0.89) with sumatriptan. Sumatriptan GMRs for AUC0-t, AUC0-∞ and Cmax versus with atogepant were within 90% CI 0.80–1.25. Conclusion: Atogepant with sumatriptan had no clinically relevant pharmacokinetic interactions.


1988 ◽  
Vol 16 (1) ◽  
pp. 50-60 ◽  
Author(s):  
J. Hilbert ◽  
V. Moritzen ◽  
A. Parks ◽  
E. Radwanski ◽  
G. Perentesis ◽  
...  

The pharmacokinetics of loratadine, a non-sedating anti-histamine, were studied in 12 normal geriatric volunteers. In an open label fashion, each volunteer received one 40 mg loratadine capsule. Blood was collected prior to and at specified times (up to 120 h) after dosing. Plasma loratadine concentrations were determined by a specific radioimmunoassay and those of an active metabolite, descarboethoxyloratadine, by high performance liquid chromatography. Concentrations of loratadine in the disposition phase were fitted to a biexponential equation and those of descarboethoxyloratadine to either a monoexponential or biexponential equation for pharmacokinetic analysis. Loratadine was rapidly absorbed, reaching a maximum plasma concentration of 50.5 ng/ml at 1.5 h after dosing. The disposition half-lives of loratadine in the distribution and elimination phases were 1.5 and 18.2 h, respectively. The area under the plasma concentration–time curve, was 146.7 h·ng/ml. Descarboethoxyloratadine had a maximum plasma concentration of 28.0 ng/ml at 2.9 h post-dose and an area under the concentration–time curve of 394.9 h·ng/ml. Its disposition half-lives in the distribution and elimination phases were 2.8 and 17.4 h, respectively. Comparison of these data with those from a previous study of loratadine in young adults showed no clear differences in the disposition half-lives between the two groups. The clearance of loratadine tends to be lower in the elderly, but inter-individual variation within each age group appears greater than any age effect.


2015 ◽  
Vol 59 (8) ◽  
pp. 4429-4435 ◽  
Author(s):  
Sang-In Park ◽  
Jaeseong Oh ◽  
Kyungho Jang ◽  
Jangsoo Yoon ◽  
Seol Ju Moon ◽  
...  

ABSTRACTTherapeutic drug monitoring (TDM) of second-line antituberculosis drugs would allow for optimal individualized dosage adjustments and improve drug safety and therapeutic outcomes. To evaluate the pharmacokinetic (PK) characteristics of clinically relevant, multidrug treatment regimens and to improve the feasibility of TDM, we conducted an open-label, multiple-dosing study with 16 healthy subjects who were divided into two groups. Cycloserine (250 mg),p-aminosalicylic acid (PAS) (5.28 g), and prothionamide (250 mg) twice daily and pyrazinamide (1,500 mg) once daily were administered to both groups. Additionally, levofloxacin (750 mg) and streptomycin (1 g) once daily were administered to group 1 and moxifloxacin (400 mg) and kanamycin (1 g) once daily were administered to group 2. Blood samples for PK analysis were collected up to 24 h following the 5 days of drug administration. The PK parameters, including the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve during a dosing interval at steady state (AUCτ), were evaluated. The correlations between the PK parameters and the concentrations at each time point were analyzed. The meanCmaxand AUCτ, respectively, for each drug were as follows: cycloserine, 24.9 mg/liter and 242.3 mg · h/liter; PAS, 65.9 mg/liter and 326.5 mg · h/liter; prothionamide, 5.3 mg/liter and 22.1 mg · h/liter; levofloxacin, 6.6 mg/liter and 64.4 mg · h/liter; moxifloxacin, 4.7 mg/liter and 54.2 mg · h/liter; streptomycin, 42.0 mg/liter and 196.7 mg · h/liter; kanamycin, 34.5 mg/liter and 153.5 mg · h/liter. The results indicated that sampling at 1, 2.5, and 6 h postdosing is needed for TDM when all seven drugs are administered concomitantly. This study indicates that PK characteristics must be considered when prescribing optimal treatments for patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT02128308.)


2016 ◽  
Vol 60 (4) ◽  
pp. 2572-2576 ◽  
Author(s):  
Daniel Gonzalez ◽  
Debra L. Palazzi ◽  
Leena Bhattacharya-Mithal ◽  
Amira Al-Uzri ◽  
Laura P. James ◽  
...  

ABSTRACTWe assessed the pharmacokinetics and safety of solithromycin, a fluoroketolide antibiotic, in a phase 1, open-label, multicenter study of 13 adolescents with suspected or confirmed bacterial infections. On days 3 to 5, the mean (standard deviation) maximum plasma concentration and area under the concentration versus time curve from 0 to 24 h were 0.74 μg/ml (0.61 μg/ml) and 9.28 μg · h/ml (6.30 μg · h/ml), respectively. The exposure and safety in this small cohort of adolescents were comparable to those for adults. (This study has been registered at ClinicalTrials.gov under registration no. NCT01966055.)


Sign in / Sign up

Export Citation Format

Share Document