scholarly journals Expiratory reactance abnormalities in patients with expiratory dynamic airway collapse: a new application of impulse oscillometry

2018 ◽  
Vol 4 (4) ◽  
pp. 00080-2018 ◽  
Author(s):  
David I. Fielding ◽  
Justin Travers ◽  
Phan Nguyen ◽  
Michael G. Brown ◽  
Gunter Hartel ◽  
...  

Expiratory dynamic airways collapse (EDAC) is a condition that affects the central airways; it is not well characterised physiologically, with relatively few studies. We sought to characterise impulse oscillometry (IOS) features of EDAC in patients with normal spirometry. Expiratory data were hypothesised to be the most revealing. In addition, we compared IOS findings in chronic obstructive pulmonary disease (COPD) patients with and without EDAC.EDAC was identified at bronchoscopy as 75–100% expiratory closure at the carina or bilateral main bronchi. Four patient groups were compared: controls with no EDAC and normal lung function; lone EDAC with normal lung function; COPD-only patients; and COPD patients with EDAC.38 patients were studied. Mean IOS data z-scores for EDAC compared to controls showed significantly higher reactance (X) values including X at 5 Hz, resonance frequency and area under the reactance curve (AX). EDAC showed significantly greater expiratory/inspiratory differences in all IOS data compared to controls. Stepwise logistic regression showed that resonant frequency best discriminated between EDAC and normal control, whereas classification and regression tree analysis found AX ≥3.523 to be highly predictive for EDAC in cases with normal lung function (14 out of 15 cases, and none out of eight controls).These data show a new utility of IOS: detecting EDAC in patients with normal lung function.

2020 ◽  
Author(s):  
Songming Zhuo ◽  
Hong Zhuang ◽  
Na Li ◽  
Sida Chen ◽  
Wugen Zhan ◽  
...  

Abstract Background: This study aimed to shed light on the correlation between the amounts of CD8+ T cells and autophagy level in COPD. Results: The objects (n = 90) were divided into three groups: COPD group (patients in the stable phase; n = 30), SN group (healthy control of smoking with normal lung function group; n = 30), and NSN groups (healthy control of non-smoking with normal lung function group; n = 30). The amounts of CD8+ (32.33 ± 4.23%), CD8+ effector (25.63 ± 8.57%) and CD8+memory (11.94 ± 5.77%) T cell in the COPD group were significantly higher those in the other two groups, while the apoptotic rate was lower in the COPD group (P < 0.05). Significant linear correlations were found of P62/GAPDH (‰) with CD8+, CD8+effector, and CD8+ memory- T cell amounts (P<0.001). Conclusions: Autophagy level is positively and linearly associated with the amounts of CD8+ T cells, suggesting that cell autophagy might be involved in COPD pathogenesis.


2020 ◽  
Vol 3 (1) ◽  
pp. 2-8
Author(s):  
Robert A. Wise

Asthma and COPD are easily recognizable clinical entities in their characteristic presentations. Asthma is an early-onset disorder characterized by Type 2, eosinophil-predominant, inflammation of the airways and is associated with atopy. COPD presents in middle age and is characterized by neutrophilic inflammation of the airways and is associated with cigarette smoking or biomass fuel exposure. Between exacerbations, asthma typically has normal lung function whereas COPD has incompletely reversible lung function. Approximately one in five patients with either of these disorders will show some features of both COPD and Asthma. This overlap is far more common than can be accounted for by chance concurrence of two common diseases. There are likely genetic and environmental susceptibilities to both disorders, but there is no single pathobiological mechanism that identifies all such overlap patients. Most likely there are numerous predispositions that lead to Asthma-COPD overlap that may be grounded in early childhood or even pre-natal events. Thus, Asthma-COPD overlap is best considered a family of diseases with overlapping clinical manifestations. The future elucidation of these different pathways to Asthma-COPD overlap, in conjunction with highly targeted therapies will aid clinicians in treating these patients.


Thorax ◽  
2001 ◽  
Vol 56 (6) ◽  
pp. 432-437
Author(s):  
A Noguera ◽  
S Batle ◽  
C Miralles ◽  
J Iglesias ◽  
X Busquets ◽  
...  

BACKGROUNDNeutrophils are likely to play a major role in the inflammatory response seen in chronic obstructive pulmonary disease (COPD). This study sought to address the hypothesis that an enhanced neutrophil response to proinflammatory agents in COPD may contribute to their recruitment and activation in the lungs.METHODSCirculating neutrophils were obtained from 10 patients with COPD, eight long term smokers with normal lung function, and eight healthy never smoking controls. The in vitro production of reactive oxygen species (ROS) was measured by the NADPH oxidase method (respiratory burst) and the surface expression of several adhesion molecules (Mac-1, LFA-1 andl-selectin) was measured by flow cytometry. Measurements were obtained under basal conditions and after stimulation with phorbol myristate acetate (PMA) and tumour necrosis factor alpha (TNFα). mRNA levels of p22-phox (a subunit of NADPH oxidase) and Mac-1 (CD11b) were also determined by reverse transcriptase polymerase chain reaction (RT-PCR).RESULTSPatients with COPD showed enhanced respiratory burst compared with smokers with normal lung function, both under basal conditions (mean (SE) fluorescence intensity (MFI) 15.1 (0.5) v 11.6 (0.5); mean difference –3.4 (95% CI of the difference –5.1 to –1.8), p<0.01) and after PMA stimulation (MFI 210 (7) v 133 (10); mean difference –77 (95% CI of the difference –102 to –52), p<0.01). Mac-1 surface expression was also enhanced in patients with COPD, both under basal conditions (MFI 91 (5)v 45 (3); mean difference –46 (95% CI of the difference –61 to –31), p<0.001) and after stimulation with TNFα (MFI 340 (15) v 263 (11); mean difference –77 (95% CI of the difference –119 to –34), p=0.001). These differences were also apparent when patients with COPD were compared with non-smokers (p<0.05). The mRNA levels of p22-phox and Mac-1 (CD11b) were similar in patients with COPD and smokers with normal lung function, suggesting that the observed differences were due to post-transcriptional regulation.CONCLUSIONSThese results demonstrate an enhanced neutrophil response to proinflammatory agents in patients with COPD which may contribute to their enhanced recruitment and activation in the lungs of these patients. These findings support those of other studies which have indicated that the neutrophil is likely to play a major role in the pathogenesis of this disease.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052095263
Author(s):  
Hong Zhuang ◽  
Na Li ◽  
Sida Chen ◽  
Yan Shen ◽  
Wugen Zhan ◽  
...  

Objective The pathogenesis of chronic obstructive pulmonary disease (COPD) remains elusive. Here, we assessed the correlation between CD8+ T cell frequencies and autophagy in COPD patients. Methods Subjects were divided into three groups (n = 30 patients/group): (1) COPD patients in the stable phase; (2) smokers with normal lung function; and (3) non-smokers with normal lung function. Flow cytometry was used to enumerate CD8+ T cell subsets (CD8+, CD8+ effector, and CD8+ memory T cells) and quantitate T-cell apoptosis. RT-PCR and western blotting were used to measure levels of LC3 and p62. Results Frequencies of CD8+ T cell subsets and expression of p62 and LC3 II/I were significantly higher in COPD patients compared with the other two groups, while the rate of apoptosis was lower. In COPD patients, LC3 II/I and p62 expression were positively correlated with CD8+ T cell subset frequencies. Moreover, a significant correlation was observed between LC3 II/I and p62 expression and T cell subset frequencies. Conclusion Autophagy level is positively correlated with the frequencies of CD8+ T cells, suggesting that autophagy might be involved in COPD pathogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Liu ◽  
Jiawei Xu ◽  
Tian Liu ◽  
Jinxiang Wu ◽  
Jiping Zhao ◽  
...  

Abstract Background Cigarette smoke (CS) is a major risk factor for Chronic Obstructive Pulmonary Disease (COPD). Follistatin-like protein 1 (FSTL1), a critical factor during embryogenesis particularly in respiratory lung development, is a novel mediator related to inflammation and tissue remodeling. We tried to investigate the role of FSTL1 in CS-induced autophagy dysregulation, airway inflammation and remodeling. Methods Serum and lung specimens were obtained from COPD patients and controls. Adult female wild-type (WT) mice, FSTL1± mice and FSTL1flox/+ mice were exposed to room air or chronic CS. Additionally, 3-methyladenine (3-MA), an inhibitor of autophagy, was applied in CS-exposed WT mice. The lung tissues and serum from patients and murine models were tested for FSTL1 and autophagy-associated protein expression by ELISA, western blotting and immunohistochemical. Autophagosome were observed using electron microscope technology. LTB4, IL-8 and TNF-α in bronchoalveolar lavage fluid of mice were examined using ELISA. Airway remodeling and lung function were also assessed. Results Both FSTL1 and autophagy biomarkers increased in COPD patients and CS-exposed WT mice. Autophagy activation was upregulated in CS-exposed mice accompanied by airway remodeling and airway inflammation. FSTL1± mice showed a lower level of CS-induced autophagy compared with the control mice. FSTL1± mice can also resist CS-induced inflammatory response, airway remodeling and impaired lung function. CS-exposed WT mice with 3-MA pretreatment have a similar manifestation with CS-exposed FSTL1± mice. Conclusions FSTL1 promotes CS-induced COPD by modulating autophagy, therefore targeting FSTL1 and autophagy may shed light on treating cigarette smoke-induced COPD.


2020 ◽  
Vol 13 (8) ◽  
pp. 100213
Author(s):  
Sung-Ryeol Kim ◽  
Kyungchul Kim ◽  
Kyung Hee Park ◽  
Jung-Won Park ◽  
Jae-Hyun Lee

2020 ◽  
Author(s):  
Iva Hlapčić ◽  
Andrea Hulina-Tomašković ◽  
Marija Grdić Rajković ◽  
Sanja Popović-Grle ◽  
Andrea Vukić Dugac ◽  
...  

Abstract Background: Extracellular heat shock protein 70 (eHsp70) acts like a damage-associated molecular pattern (DAMP) and it might modulate immune responses in patients with chronic obstructive pulmonary disease (COPD). The aim of the study was to explore plasma eHsp70 concentration in patients with stable COPD, its association with disease severity and smoking status as well as its diagnostic performance in COPD assessment.Methods: Blood samples were collected from 137 COPD patients and 95 healthy individuals. COPD patients were subdivided into GOLD 2-4 stages based on airflow obstruction severity and GOLD A-D groups regarding symptoms and exacerbations. Concentration of eHsp70 was assessed in EDTA plasma by the commercially available ELISA kit. Statistic analysis was performed by MedCalc statistical software.Results: eHsp70 concentration was increased in COPD patients when compared to controls and was increasing with the severity of airflow limitation as well as symptoms burden and exacerbation history. There were no differences in eHsp70 concentrations among COPD patients based on smoking status, yet eHsp70 was increased in healthy smokers compared to healthy non-smokers. Interestingly, healthy smokers had similar eHsp70 level as COPD patients in GOLD 2 stage and those in GOLD A group. In addition, eHsp70 showed significant negative correlation with lung function parameters FEV1 and FEV1/FVC and positive correlation with COPD multicomponent indices BODCAT, BODEx, CODEx and DOSE. Finally, eHsp70 showed great predictive value (OR=7.63) and correctly classified 76% of cases.Conclusions: Plasma eHsp70 is associated with COPD prediction and disease severity and might have a potential of becoming an additional biomarker in COPD assessment.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nailya Kubysheva ◽  
Larisa Postnikova ◽  
Svetlana Soodaeva ◽  
Viкtor Novikov ◽  
Tatyana Eliseeva ◽  
...  

The definition of new markers of local and systemic inflammation of chronic obstructive pulmonary disease (COPD) is one of the priority directions in the study of pathogenesis and diagnostic methods improvement for this disease. We investigated 91 patients with COPD and 21 healthy nonsmokers. The levels of soluble CD25, CD38, CD8, and HLA-I-CD8 molecules in the blood serum and exhaled breath condensate (EBC) in moderate-to-severe COPD patients during exacerbation and stable phase were studied. An unidirectional change in the content of sCD25, sCD38, and sCD8 molecules with increasing severity of COPD was detected. The correlations between the parameters of lung function and sCD8, sCD25, and sHLA-I-CD8 levels in the blood serum and EBC were discovered in patients with severe COPD. The findings suggest a pathogenetic role of the investigated soluble molecules of the COPD development and allow considering the content of sCD8, sCD25, and sHLA-I-CD8 molecules as additional novel systemic and endobronchial markers of the progression of chronic inflammation of this disease.


2021 ◽  
pp. 00876-2020
Author(s):  
Mathew Suji Eapen ◽  
Wenying Lu ◽  
Tillie L. Hackett ◽  
Gurpreet Kaur Singhera ◽  
Malik Q. Mahmood ◽  
...  

IntroductionPrevious reports showed epithelial mesenchymal transition (EMT) as an active process that contributes to small airway (SA) fibrotic pathology. Myofibroblasts are highly active pro-fibrotic cells that secrete excessive and altered extracellular matrix (ECM). Here we relate SA myofibroblast presence with airway remodelling, physiology and EMT activity in smokers and COPD patients.MethodsLung resections from non-smoker controls (NC), normal lung function smokers (NLFS), COPD current (CS) and ex-smokers (ES) were stained with anti-human αSMA, collagen 1, and fibronectin. αSMA+ive cells were computed in reticular basement membrane (Rbm), lamina propria (LP), and adventitia and presented per mm of Rbm and mm2 of LP. Collagen-1 and fibronectin are presented as a percentage change from normal. All analysis including airway thickness were measured using Image-pro-plus 7.0.ResultsWe found an increase in sub-epithelial LP (especially) and adventitia thickness in all pathological groups compared to NC. Increases in αSMA+ive myofibroblasts were observed in sub-epithelial Rbm, LP, and adventitia in both the smoker and COPD groups compared to NCs. Further, the increase in the myofibroblast population in the LP was strongly associated with decrease in lung function, LP thickening, increase in ECM protein deposition, and finally EMT activity in epithelial cells.ConclusionsThis is the first systematic characterisation of small airway myofibroblasts in COPD based on their localisation, with statistically significant correlations between them and other pan-airway structural, lung function, and ECM protein changes. Finally, we suggest that EMT may be involved in such changes.


Sign in / Sign up

Export Citation Format

Share Document