scholarly journals Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation

2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Vladimir A Lukhtanov ◽  
Vlad Dincă ◽  
Gerard Talavera ◽  
Roger Vila
Author(s):  
Julieta Rodríguez ◽  
Rocío Deanna ◽  
Franco Chiarini

AbstractWithin the cosmopolitan family Solanaceae, Physalideae is the tribe with the highest generic diversity (30 genera and more than 200 species). This tribe embraces subtribe Physalidinae, in which positions of some genera are not entirely resolved. Chromosomes may help on this goal, by providing information on the processes underlying speciation. Thus, cytogenetic analyses were carried out in the subtribe in order to establish its chromosome number and morphology. Physalidinae is characterized by x = 12 and most species shows a highly asymmetric karyotype. These karyotype traits were mapped onto a molecular phylogeny to test the congruence between karyotype evolution and clade differentiation. A diploid ancestor was reconstructed for the subtribe, and five to six polyploidy independent events were estimated, plus one aneuploidy event (X = 11 in the monotypic genus Quincula). Comparative phylogenetic methods showed that asymmetry indices and chromosome arm ratio (r) have a high phylogenetic signal, whereas the number of telocentric and submetacentric chromosomes presented a conspicuous amount of changes. Karyotype asymmetry allow us to differentiate genera within the subtribe. Overall, our study suggests that Physalidineae diversification has been accompanied by karyotype changes, which can be applied to delimit genera within the group.


Zootaxa ◽  
2009 ◽  
Vol 1985 (1) ◽  
pp. 63-68 ◽  
Author(s):  
DOROTA LACHOWSKA ◽  
MARIA ROŻEK ◽  
MILADA HOLECOVÀ

In order to clarify the taxonomic position of three sibling species of weevils from the Acalles echinatus group, A. echinatus, A. fallax and A. petryszaki, cytogenetic relationships are investigated by studying the mitotic and meiotic chromosomes, including the localisation of heterochromatin by C-banding, as well as the localisation of NORs by silver impregnation. These sources of data are congruent and strongly support that the examined species are closely related. All examined species are characterised by a karyotype of the same chromosome number and sex determination system but with different morphology of chromosomes. All the analysed features, such as the centromeric index, relative length, Cbands and NORs, show that the structure of the karyotype of A. echinatus is more similar to that of A. petryszaki, whereas the karyotype of A. fallax is divergent. The higher chromosome number (2n = 30) in relation to the modal formula in Curculionidae (2n = 22) suggests that karyotype evolution in these species could have occurred by centric fissions of metacentric elements leading to acrocentry.


Zootaxa ◽  
2009 ◽  
Vol 2315 (1) ◽  
pp. 39-46 ◽  
Author(s):  
MARIA G. POGGIO ◽  
MARIA J. BRESSA ◽  
ALBA G. PAPESCHI ◽  
OSVALDO DI IORIO ◽  
PAOLA TURIENZO

The Cimicidae (Hemiptera) are known to be blood ectoparasites primarily on birds and bats. Three species of the subfamily Haematosiphoninae are known from Argentina: Acanthocrios furnarii, Ornithocoris toledoi, and Psitticimex uritui; all feed on diverse avian hosts. The chromosome number and male meiosis of A. furnarii, and P. uritui from new Argentinean samples are analyzed and compared with previous data. The sample of A. furnarii described by Ueshima (1966) with 2n = 32 + XY (male), strikingly differs from the present results (2n = 10 + XY, male). The diploid number of P. uritui agree with the previously reported by Ueshima (1966), 2n = 28 + X 1 X 2 Y (male). Taxonomical implications about the identity of A. furnarii are discussed and the mechanisms of the karyotype evolution of species belonging to Haematosiphoninae are proposed.


2019 ◽  
Vol 191 (4) ◽  
pp. 484-501 ◽  
Author(s):  
Abelardo Aparicio ◽  
Marcial Escudero ◽  
Ana Valdés-Florido ◽  
Miguel Pachón ◽  
Encarnación Rubio ◽  
...  

Abstract Helianthemum squamatum is a specialist gypsophile, the only species of a recently diverged lineage in subgenus Helianthemum characterized by having the lowest chromosome number in the genus (n = 5). With the hypothesis of great genome reorganization in the lineage of H. squamatum, we (1) modelled the evolution of the chromosome number in the genus Helianthemum, (2) analysed the karyotype and the nuclear DNA content of H. squamatum and its sister species H. syriacum (n = 10) and (3) studied in detail the meiotic process of H. squamatum. Our analyses show that: (1) the rate of chromosome losses in the lineage that gave rise to H. squamatum is 100 times higher than in the genus as a whole; (2) compared to its sister species, H. squamatum has a more symmetric karyotype composed of longer metacentric chromosomes and retains c. 80% of its nuclear DNA content and (3) achiasmatic behaviour of chromosomes occurs during microsporogenesis despite full synapsis. Our results are in agreement with previous knowledge showing that reduced chromosome numbers in determinate lineages are found in short-lived species adapted to stressful environments, and we suggest that a combination of fewer chromosomes, a smaller genome, a shorter life cycle and the suppression of meiotic recombination can together contribute to the maintenance of those advantageous allelic combinations that makes H. squamatum a true gypsophile, enabling the individual plants to cope with the harshness imposed by dry gypsum soils.


Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1289-1292 ◽  
Author(s):  
Ingo Schubert ◽  
Rigomar Rieger ◽  
Jörg Fuchs

A complete chromosomal fusion–fission cycle is described for the first time. In the field bean, Vicia faba, this cycle probably started with a reversible fusion of two telocentrics giving rise to the standard metacentric chromosome I. The next step was a recent fission of this chromosome into two stable telocentrics eventually followed by a new fusion reconstituting the metacentric chromosome.Key words: karyotype evolution, chromosome number, chromosomal fusion–fission cycle, Vicia faba.


2015 ◽  
Vol 146 (3) ◽  
pp. 238-242 ◽  
Author(s):  
Natalya A. Lemskaya ◽  
Irina V. Kartavtseva ◽  
Nadezhda V. Rubtsova ◽  
Fedor N. Golenishchev ◽  
Irina N. Sheremetyeva ◽  
...  

The Muya Valley vole (Microtus mujanensis) has a constant diploid chromosome number of 2n = 38, but an unstable karyotype with polymorphic chromosome pairs. Here, we describe 4 karyotypic variants involving 2 polymorphic chromosome pairs, MMUJ8 and MMUJ14, in 6 animals from Buryatia using a combination of GTG-banding and chromosome painting with M. agrestis probes. We suggest that the polymorphic pairs MMUJ8 and MMUJ14 were formed through pericentric inversions that played a major role during karyotype evolution of the species. We also propose that the stable diploid number with some ongoing polymorphism in the number of chromosome arms indicates that this evolutionarily young endemic species of Russian Far East is on the way to karyotype and likely species stabilization.


2019 ◽  
Vol 159 (1) ◽  
pp. 32-38
Author(s):  
Igor C.A. Seligmann ◽  
Ivanete O. Furo ◽  
Michelly S. dos Santos ◽  
Marcella M. Tagliarini ◽  
Cristiane C.D. Araujo ◽  
...  

Despite the variation observed in the diploid chromosome number of storks (Ciconiiformes, Ciconiidae), from 2n = 52 to 2n = 78, most reports have relied solely on analyses by conventional staining. As most species have similar macrochromosomes, some authors propose that karyotype evolution involves mainly fusions between microchromosomes, which are highly variable in species with different diploid numbers. In order to verify this hypothesis, in this study, the karyotypes of 2 species of storks from South America with different diploid numbers, the jabiru (Jabiru mycteria, 2n = 56) and the maguary stork (Ciconia maguary, 2n = 72), were analyzed by chromosome painting using whole chromosome probes from the macrochromosomes of Gallus gallus (GGA) and Leucopternis albicollis (LAL). The results revealed that J. mycteria and C. maguary share synteny within chromosome pairs 1-9 and Z. The syntenies to the macrochromosomes of G. gallus are conserved, except for GGA4, which is homologous to 2 different pairs, as in most species of birds. A fusion of GGA8 and GGA9 was observed in both species. Additionally, chromosomes corresponding to GGA4p and GGA6 are fused to other segments that did not hybridize to any of the macrochromosome probes used, suggesting that these segments correspond to microchromosomes. Hence, our data corroborate the proposed hypothesis that karyotype evolution is based on fusions involving microchromosomes. In view of the morphological constancy of the macrochromosome pairs in most Ciconiidae, we propose a putative ancestral karyotype for the family, including the GGA8/GGA9 fusion, and a diploid number of 2n = 78. The use of probes for microchromosome pairs should be the next step in identifying other synapomorphies that may help to clarify the phylogeny of this family.


2020 ◽  
Vol 14 (4) ◽  
pp. 549-566
Author(s):  
Olesya Buleu ◽  
Ilyas Jetybayev ◽  
Mohsen Mofidi-Neyestanak ◽  
Alexander Bugrov

For the first time, cytogenetic features of grasshoppers from Iran have been studied. In this paper we conducted a comparative cytogenetic analysis of six species from the family Pamphagidae. The species studied belong to subfamilies Thrinchinae Stål, 1876 (Eremopeza bicoloripes (Moritz, 1928), E. saussurei (Uvarov, 1918)) and Pamphaginae (Saxetania paramonovi (Dirsh, 1927), Tropidauchen escalerai Bolívar, 1912, Tropidauchen sp., and Paranothrotes citimus Mistshenko, 1951). We report information about the chromosome number and morphology, C-banding patterns, and localization of ribosomal DNA clusters and telomeric (TTAGG)n repeats. Among these species, only S. paramonovi had an ancestral Pamphagidae karyotype (2n=18+X0♂; FN=19♂). The karyotypes of the remaining species differed from the ancestral karyotypes. The karyotypes of E. bicoloripes and E. saussurei, despite having the same chromosome number (2n=18+X0♂) had certain biarmed chromosomes (FN=20♂ and FN=34♂ respectively). The karyotypes of T. escalerai and Tropidauchen sp. consisted of eight pairs of acrocentric autosomes, one submetacentric neo-X chromosome and one acrocentric neo-Y chromosome in males (2n=16+neo-X neo-Y♂). The karyotype of P. citimus consisted of seven pairs of acrocentric autosomes, submetacentric the neo-X1 and neo-Y and acrocentric the neo-X2 chromosomes (2n=14+neo-X1 neo-X2 neo-Y♂). Comparative analysis of the localization and size of C-positive regions, the position of ribosomal clusters and the telomeric DNA motif in the chromosomes of the species studied, revealed early unknown features of their karyotype evolution. The data obtained has allowed us to hypothesize that the origin and early phase of evolution of the neo-Xneo-Y♂ sex chromosome in the subfamily Pamphaginae, are linked to the Iranian highlands.


Author(s):  
E. Yu Mitrenina ◽  
A. S. Erst

We have conducted comparative study of karyotypes for nine Eranthis Salisb. species: E. bulgarica (Stef.)Stef., E. hyemalis (L.) Salisb., E. longistipitata Regel (section Eranthis), E. byunsanensis B. Y. Sun, E. lobulata W. T.Wang, E. pinnatifida Maxim., E. sibirica DC., E. stellata Maxim., and E. tanhoensis Erst (section Shibateranthis). Thespecies-specifity of karyotypes was established for all species investigated. The chromosomes of each species weremedium or large in size (4–12 µm). Besides E. sibirica and E. tanhoensis, all the investigated specimens had diploidcytotypes with 2n = 16 and the basic chromosome number x = 8. Plants from five E. sibirica populations were tetraploidand hexaploid with x = 7, 2n = 28 and 2n = 42 respectively. Plants from seven E. tanhoensis populations were diploid withx = 7 and 2n = 14. Diploid karyotypes of Eranthis included 4–5 pairs of large equal-armed (metacentric) chromosomes,and 2–4 pairs of unequal-armed chromosomes belonging to different morphological types (submetacentric, subtelocentric,and acrocentric ones). We have revealed B chromosomes in root meristematic cells of E. lobulata and E. tanhoensis forthe first time. We suppose that the key developments in Eranthis karyotype`s evolution were pericentric inversions,polyploidy, and probably translocations.


Sign in / Sign up

Export Citation Format

Share Document