anchored hybrid enrichment
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 5)

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 964
Author(s):  
Yanghui Cao ◽  
Christopher H. Dietrich

Reliable host plant records are available for only a small fraction of herbivorous insect species, despite their potential agricultural importance. Most available data on insect–plant associations have been obtained through field observations of occurrences of insects on particular plants. Molecular methods have more recently been used to identify potential host plants using DNA extracted from insects, but most prior studies using these methods have focused on chewing insects that ingest tissues expected to contain large quantities of plant DNA. Screening of Illumina data obtained from sap feeders of the hemipteran family Cicadellidae (leafhoppers) using anchored hybrid enrichment indicates that, despite feeding on plant fluids, these insects often contain detectable quantities of plant DNA. Although inclusion of probes for bacterial 16S in the original anchored hybrid probe kit yielded relatively high detection rates for chloroplast 16S, the Illumina short reads also, in some cases, included DNA for various plant barcode genes as “by-catch”. Detection rates were generally only slightly higher for Typhlocybinae, which feed preferentially on parenchyma cell contents, compared to other groups of leafhoppers that feed preferentially on phloem or xylem. These results indicate that next-generation sequencing provides a powerful tool to investigate the specific association between individual insect and plant species.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 515
Author(s):  
Eva Turk ◽  
Jason E. Bond ◽  
Ren-Chung Cheng ◽  
Klemen Čandek ◽  
Chris A. Hamilton ◽  
...  

Reconstructing biogeographic history is challenging when dispersal biology of studied species is poorly understood, and they have undergone a complex geological past. Here, we reconstruct the origin and subsequent dispersal of coin spiders (Nephilidae: Herennia Thorell), a clade of 14 species inhabiting tropical Asia and Australasia. Specifically, we test whether the all-Asian range of Herennia multipuncta is natural vs. anthropogenic. We combine Anchored Hybrid Enrichment phylogenomic and classical marker phylogenetic data to infer species and population phylogenies. Our biogeographical analyses follow two alternative dispersal models: ballooning vs. walking. Following these assumptions and considering measured distances between geographical areas through temporal intervals, these models infer ancestral areas based on varying dispersal probabilities through geological time. We recover a wide ancestral range of Herennia including Australia, mainland SE Asia and the Philippines. Both models agree that H. multipuncta internal splits are generally too old to be influenced by humans, thereby implying its natural colonisation of Asia, but suggest quite different colonisation routes of H. multipuncta populations. The results of the ballooning model are more parsimonious as they invoke fewer chance dispersals over large distances. We speculate that coin spiders’ ancestor may have lost the ability to balloon, but that H. multipuncta regained it, thereby colonising and maintaining larger areas.


2021 ◽  
Author(s):  
Alex Pyron ◽  
David A. Beamer ◽  
Chace R. Holzheuser ◽  
Emily Moriarty Lemmon ◽  
Alan R. Lemmon ◽  
...  

Abstract Species that went extinct prior to the genomic era are typically out-of-reach for modern phylogenetic studies. We refer to these as “Alexandrian” extinctions, after the lost library of the ancient world. This is particularly limiting for conservation studies, as genetic data for such taxa may be key to understand extinction threats and risks, the causes of declines, and inform management of related, extant populations. Fortunately, continual advances in biochemistry and DNA sequencing offer increasing ability to recover DNA from historical museum specimens, including fluid-preserved natural history collections. Here, we report on success in recovering nuclear and mitochondrial data from the apparently-extinct subspecies Desmognathus fuscus carri (Neill 1951), a plethodontid salamander from spring runs in central Florida. The two specimens are 50 years old and were likely preserved in unbuffered formalin, but application of a recently derived extraction procedure yielded usable DNA and partially successful Anchored Hybrid Enrichment sequencing. These data suggest that the populations of D. f. carri from peninsular Florida are conspecific with the D. auriculatus A lineage as suggested by previous authors, but likely represented an ecogeographically distinct genetic segment that has now been lost. Genetic data from this Alexandrian extinction thus confirm the geographic extent of population declines and extirpations as well as their ecological context, suggesting a possibly disproportionate loss from sandy-bottom clearwater streams compared to blackwater swamps. Success of these methods bodes well for large-scale application to fluid-preserved natural history specimens from relevant historical populations, but the possibility of significant DNA damage and related sequencing errors in additional hurdle to overcome.


Author(s):  
Javan Carter ◽  
Garth Spellman ◽  
Rebecca Kimball ◽  
Rebecca Safran ◽  
Erik Funk ◽  
...  

Despite the increasing feasibility of sequencing whole genomes from diverse taxa, a persistent problem in phylogenomics is the selection of appropriate markers or loci for a given taxonomic group or research question. In this review, we aim to streamline the decision-making process for selecting data types used in phylogenomic studies by providing an introduction to commonly used types of genomic data, their characteristics, and their associated uses in phylogenomics. Specifically, we review the uses and features of ultraconserved elements (UCEs; including flanking regions), anchored hybrid enrichment (AHE) loci, conserved non-exonic elements (CNEE), untranslated regions (UTRs), introns, exons, mitochondrial DNA (mtDNA), single nucleotide polymorphisms (SNPs), and anonymous regions (nonspecific regions of the genome that are evenly or randomly distributed across the genome). These various data types differ in their mutation rates, likelihood of neutrality or of being strongly linked to loci under selection, and mode of inheritance, each of which are important considerations in phylogenomic reconstruction. These features give each genomic region or data type important advantages and disadvantages, depending on the biological question, number of taxa, evolutionary timescale, and analytical methods used. We provide a clear and concise outline (Table 1) as a resource to efficiently consider relevant and key aspects of each data type in order. As there are a number of factors to consider when designing phylogenomic studies, this review may serve as a primer when weighing options between multiple potential phylogenomic data types.


2021 ◽  
Author(s):  
John M. Pfeiffer ◽  
Daniel L. Graf ◽  
Kevin S. Cummings ◽  
Lawrence M. Page

The tribes Contradentini and Rectidentini (Unionidae) comprise a diverse clade of freshwater mussels endemic to South-east Asia. Our understanding of the diversity and phylogeny of this radiation has improved dramatically in recent years, but this systematic transformation has not yet benefited from comprehensive museum sampling or phylogenomic methods. A synthetic taxonomic revision of the Contradentini+Rectidentini that leverages these useful and accessible methods is needed. We set out to (1) generate a phylogenomic reconstruction of the supraspecific relationships of the Contradentini+Rectidentini using anchored hybrid enrichment, (2) revise the taxonomy and geographic boundaries of the generic and species-level diversity of the radiation, and (3) identify patterns of freshwater mussel diversity and distribution in this clade and discuss the processes that may have precipitated them. Our phylogenomic reconstruction using over 1600 loci, with a total alignment length of over a half a million nucleotides, recovers a well supported phylogeny of the clade that resolves four independent multispecies radiations endemic to the Mekong drainage. We examined, digitised, and imaged 1837 records from 15 natural history museums that provided the necessary data to document the morphological variation and geographic distributions of the focal taxa. We also analysed 860 COI sequences, 519 of which were generated in this study, to better understand the species boundaries and geographic distributions of the recovered clades. We recognise 54 valid species in the tribes Contradentini and Rectidentini, including 9 described herein as new to science. Out of this revision emerged several interesting biogeographic patterns that appear to have resulted from recent stream capture, historical confluence, and intradrainage barriers to dispersal. We hypothesise that these phenomena shaped the diversity and distribution of the Contradentini+Rectidentini, contributing to the formation of several characteristic freshwater mussel provinces in South-east Asia.


2020 ◽  
Vol 4 (5) ◽  
Author(s):  
Jason E Bond ◽  
Chris A Hamilton ◽  
Rebecca L Godwin ◽  
Joel M Ledford ◽  
James Starrett

Abstract We report here the discovery of a remarkable new monotypic mygalomorph spider genus, known only from one geographical location along the central coast of California. The single relict species comprising Cryptocteniza kawtakn. gen. n. sp., is morphologically distinct and geographically isolated from other related genera, with its closest phylogenetic relatives found much further to the east in New Mexico and Arizona. Using a phylogenomic approach employing anchored hybrid enrichment, we reconstruct the evolutionary history of the family Euctenizidae Raven, 1985 to explore relationships among genera, affirmatively place previously undescribed taxa, explore rates of diversification, and reconstruct the group’s biogeography. A biogeographic analysis shows that extinction likely played a significant role in shaping the observed disjunct modern-day distribution of Cryptocteniza and its sister taxa. Our extinction hypothesis is further bolstered by a diversification rate analysis identifying considerably higher rates of speciation in other euctenizid lineages like AptostichusSimon, 1891. Consequently, changes in environmental conditions (or other related biotic and/or abiotic factors) may have spurred an adaptive radiation in related genera now widely distributed across the California Floristic Province biodiversity hotspot, with concomitant extinction in Cryptocteniza following the Miocene and establishment of a Mediterranean climate. Owing to its phylogenetic distinctiveness, incredibly narrow distribution and age, we show that Cryptocteniza meets all the criteria of an ‘Endangered Living Fossil’ and is consequently of grave conservation concern.


Author(s):  
Sonal Singhal ◽  
Timothy J Colston ◽  
Maggie R Grundler ◽  
Stephen A Smith ◽  
Gabriel C Costa ◽  
...  

Abstract Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span higher-level diversity within the clade, which we augmented with publicly available sequences for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative topologies at 17 contentious nodes in the phylogeny. We identified shared properties of conflicting loci, finding that rate and compositional heterogeneity drives discordance between gene trees and species tree and that conflicting loci rarely overlap across contentious nodes. Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we confidently resolve 9 of the 17 problematic nodes. We suggest this locus-by-locus and node-by-node approach can build consensus on which topological resolutions remain uncertain in phylogenomic studies of other contentious groups. [Anchored hybrid enrichment (AHE); gene tree conflict; molecular evolution; phylogenomic concordance; target capture; ultraconserved elements (UCE).]


2020 ◽  
Vol 194 (2) ◽  
pp. 141-163
Author(s):  
Tamara Villaverde ◽  
Pedro Jiménez-Mejías ◽  
Modesto Luceño ◽  
Marcia J Waterway ◽  
Sangtae Kim ◽  
...  

Abstract The field of systematics is experiencing a new molecular revolution driven by the increased availability of high-throughput sequencing technologies. As these techniques become more affordable, the increased genomic resources have increasingly far-reaching implications for our understanding of the Tree of Life. With c. 2000 species, Carex (Cyperaceae) is one of the five largest genera of angiosperms and one of the two largest among monocots, but the phylogenetic relationships between the main lineages are still poorly understood. We designed a Cyperaceae-specific HybSeq bait kit using transcriptomic data of Carex siderosticta and Cyperus papyrus. We identified 554 low-copy nuclear orthologous loci, targeting a total length of c. 1 Mbp. Our Cyperaceae-specific kit shared loci with a recently published angiosperm-specific Anchored Hybrid Enrichment kit, which enabled us to include and compile data from different sources. We used our Cyperaceae kit to sequence 88 Carex spp., including samples of all the five major clades in the genus. For the first time, we present a phylogenetic tree of Carex based on hundreds of loci (308 nuclear exon matrices, 543 nuclear intron matrices and 66 plastid exon matrices), demonstrating that there are six strongly supported main lineages in Carex: the Siderostictae, Schoenoxiphium, Unispicate, Uncinia, Vignea and Core Carex clades. Based on our results, we suggest a revised subgeneric treatment and provide lists of the species belonging to each of the subgenera. Our results will inform future biogeographic, taxonomic, molecular dating and evolutionary studies in Carex and provide the step towards a revised classification that seems likely to stand the test of time.


2020 ◽  
Vol 69 (6) ◽  
pp. 1039-1051 ◽  
Author(s):  
Damien Esquerré ◽  
Stephen Donnellan ◽  
Ian G Brennan ◽  
Alan R Lemmon ◽  
Emily Moriarty Lemmon ◽  
...  

Abstract Ecological opportunities can be provided to organisms that cross stringent biogeographic barriers towards environments with new ecological niches. Wallace’s and Lyddeker’s lines are arguably the most famous biogeographic barriers, separating the Asian and Australo-Papuan biotas. One of the most ecomorphologically diverse groups of reptiles, the pythons, is distributed across these lines, and are remarkably more diverse in phenotype and ecology east of Lydekker’s line in Australo-Papua. We used an anchored hybrid enrichment approach, with near complete taxon sampling, to extract mitochondrial genomes and 376 nuclear loci to resolve and date their phylogenetic history. Biogeographic reconstruction demonstrates that they originated in Asia around 38-45 Ma and then invaded Australo-Papua around 23 Ma. Australo-Papuan pythons display a sizeable expansion in morphological space, with shifts towards numerous new adaptive optima in head and body shape, coupled with the evolution of new micro-habitat preferences. We provide an updated taxonomy of pythons and our study also demonstrates how ecological opportunity following colonization of novel environments can promote morphological diversification in a formerly ecomorphologically conservative group. [Adaptive radiation; anchored hybrid enrichment; biogeography; morphometrics; snakes.]


Sign in / Sign up

Export Citation Format

Share Document