scholarly journals Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

2010 ◽  
Vol 10 (1) ◽  
pp. 226 ◽  
Author(s):  
Diane M Martin ◽  
Sébastien Aubourg ◽  
Marina B Schouwey ◽  
Laurent Daviet ◽  
Michel Schalk ◽  
...  
Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 518
Author(s):  
Zequn Chen ◽  
Xiwu Qi ◽  
Xu Yu ◽  
Ying Zheng ◽  
Zhiqi Liu ◽  
...  

Terpenoids are a wide variety of natural products and terpene synthase (TPS) plays a key role in the biosynthesis of terpenoids. Mentha plants are rich in essential oils, whose main components are terpenoids, and their biosynthetic pathways have been basically elucidated. However, there is a lack of systematic identification and study of TPS in Mentha plants. In this work, we genome-widely identified and analyzed the TPS gene family in Mentha longifolia, a model plant for functional genomic research in the genus Mentha. A total of 63 TPS genes were identified in the M. longifolia genome sequence assembly, which could be divided into six subfamilies. The TPS-b subfamily had the largest number of genes, which might be related to the abundant monoterpenoids in Mentha plants. The TPS-e subfamily had 18 members and showed a significant species-specific expansion compared with other sequenced Lamiaceae plant species. The 63 TPS genes could be mapped to nine scaffolds of the M. longifolia genome sequence assembly and the distribution of these genes is uneven. Tandem duplicates and fragment duplicates contributed greatly to the increase in the number of TPS genes in M. longifolia. The conserved motifs (RR(X)8W, NSE/DTE, RXR, and DDXXD) were analyzed in M. longifolia TPSs, and significant differentiation was found between different subfamilies. Adaptive evolution analysis showed that M. longifolia TPSs were subjected to purifying selection after the species-specific expansion, and some amino acid residues under positive selection were identified. Furthermore, we also cloned and analyzed the catalytic activity of a single terpene synthase, MlongTPS29, which belongs to the TPS-b subfamily. MlongTPS29 could encode a limonene synthase and catalyze the biosynthesis of limonene, an important precursor of essential oils from the genus Mentha. This study provides useful information for the biosynthesis of terpenoids in the genus Mentha.


2016 ◽  
Vol 95 (3) ◽  
pp. 515-526 ◽  
Author(s):  
HUI CAO ◽  
CAI-YUN LIU ◽  
CHUN-XIANG LIU ◽  
YUE-LING ZHAO ◽  
RUI-RUI XU

2007 ◽  
pp. 373-390
Author(s):  
Alex Aronov ◽  
Al Pierce ◽  
Guy Bemis ◽  
Marc Jacobs ◽  
Harmon Zuccola ◽  
...  

2017 ◽  
Vol 89 (3) ◽  
pp. 429-441 ◽  
Author(s):  
Nikolaj L. Hansen ◽  
Allison M. Heskes ◽  
Britta Hamberger ◽  
Carl E. Olsen ◽  
Björn M. Hallström ◽  
...  

1984 ◽  
Vol 4 (1) ◽  
pp. 23-29
Author(s):  
A G Papageorge ◽  
D Defeo-Jones ◽  
P Robinson ◽  
G Temeles ◽  
E M Scolnick

A family of normal vertebrate genes and oncogenes has been called the ras gene family. The name ras was assigned to this gene family based on the species of origin of the viral oncogenes of the rat-derived Harvey and Kirsten murine sarcoma viruses. There are now three known functional members of the ras gene family, and genes homologous to ras genes have been detected in the DNA of a wide variety of mammals and in Drosophila melanogaster. Prior experiments have detected proteins coded for by ras genes in a large number of normal cells, cell lines, and tumors. We report here the detection of ras-related proteins in D. melanogaster, a result predicted by the earlier detection of ras-related genes in the Drosophila genome. We also report for the first time the detection of ras-related proteins in a single-cell eucaryocyte, Saccharomyces cerevisiae. These proteins, approximately 30K in size, are recognized by both a monoclonal antibody which binds to the p21 coded for by mammalian ras genes and a polyclonal rat serum made by transplanting a v-Ha-ras-induced tumor in Osborne-Mendel rats. The p21 of v-Ha-ras and the 30K proteins from S. cerevisiae share methionine-labeled peptides as detected by two-dimensional tryptic peptide maps. The results indicate that S. cerevisiae synthesizes ras-related proteins. A genetic analysis of the function of these proteins for yeast cells may now be possible.


2019 ◽  
Vol 11 (8) ◽  
pp. 2078-2098 ◽  
Author(s):  
Shu-Ye Jiang ◽  
Jingjing Jin ◽  
Rajani Sarojam ◽  
Srinivasan Ramachandran

Abstract Terpenes are organic compounds and play important roles in plant growth and development as well as in mediating interactions of plants with the environment. Terpene synthases (TPSs) are the key enzymes responsible for the biosynthesis of terpenes. Although some species were employed for the genome-wide identification and characterization of the TPS family, limited information is available regarding the evolution, expansion, and retention mechanisms occurring in this gene family. We performed a genome-wide identification of the TPS family members in 50 sequenced genomes. Additionally, we also characterized the TPS family from aromatic spearmint and basil plants using RNA-Seq data. No TPSs were identified in algae genomes but the remaining plant species encoded various numbers of the family members ranging from 2 to 79 full-length TPSs. Some species showed lineage-specific expansion of certain subfamilies, which might have contributed toward species or ecotype divergence or environmental adaptation. A large-scale family expansion was observed mainly in dicot and monocot plants, which was accompanied by frequent domain loss. Both tandem and segmental duplication significantly contributed toward family expansion and expression divergence and played important roles in the survival of these expanded genes. Our data provide new insight into the TPS family expansion and evolution and suggest that TPSs might have originated from isoprenyl diphosphate synthase genes.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Xiao ◽  
Chaoping Wang ◽  
Nadeem Khan ◽  
Mengxia Chen ◽  
Weihong Fu ◽  
...  

Heredity ◽  
2018 ◽  
Vol 121 (1) ◽  
pp. 87-104 ◽  
Author(s):  
Jakob B. Butler ◽  
Jules S. Freeman ◽  
Brad M. Potts ◽  
René E. Vaillancourt ◽  
Dario Grattapaglia ◽  
...  

2019 ◽  
Vol 15 (4) ◽  
Author(s):  
Mohammed İbrahime ◽  
Umut Kibar ◽  
Kemal Kazan ◽  
Canan Yüksel Özmen ◽  
Filiz Mutaf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document