scholarly journals Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets

2011 ◽  
Vol 11 (1) ◽  
pp. 86 ◽  
Author(s):  
Richard L Tillett ◽  
Ali Ergül ◽  
Rebecca L Albion ◽  
Karen A Schlauch ◽  
Grant R Cramer ◽  
...  
2019 ◽  
Author(s):  
Carly D. Kenkel ◽  
Veronique J.L. Mocellin ◽  
Line K. Bay

AbstractThe mechanisms resulting in the breakdown of the coral symbiosis once the process of bleaching has been initiated remain unclear. Distinguishing symbiont loss from the abiotic stress response may shed light on the cellular and molecular pathways involved in each process. This study examined physiological changes and global gene expression patterns associated with white patch syndrome (WPS) in P. lobata, which manifests in localized bleaching independent of thermal stress. In addition, a meta-analysis of global gene expression studies in other corals and anemones was used to contrast differential regulation as a result of abiotic stress from expression patterns correlated with symbiotic state. Symbiont density, chlorophyll a content, holobiont productivity, instant calcification rate, and total host protein content were uniformly reduced in WPS relative to healthy tissue. While expression patterns associated with WPS were secondary to fixed effects of source colony, specific functional enrichments suggest that the viral infection putatively giving rise to this condition affects symbiont rather than host cells. The meta-analysis revealed that expression patterns in WPS-affected tissues were significantly correlated with prior studies examining short-term thermal stress responses. This correlation was independent of symbiotic state, as the strongest correlations were found between WPS adults and both symbiotic adult and aposymbiotic coral larvae experiencing thermal stress, suggesting that the majority of expression changes reflect a non-specific stress response. Across studies, the magnitude and direction of expression change among particular functional enrichments suggests unique responses to stressor duration, and highlights unique responses to bleaching in an anemone model which engages in a non-obligate symbiosis.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ettore Tiraboschi ◽  
Ramon Guirado ◽  
Dario Greco ◽  
Petri Auvinen ◽  
Jose Fernando Maya-Vetencourt ◽  
...  

The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain.


2003 ◽  
Vol 278 (14) ◽  
pp. 12563-12573 ◽  
Author(s):  
Brenda C. O'Connell ◽  
Ann F. Cheung ◽  
Carl P. Simkevich ◽  
Wanny Tam ◽  
Xiaojia Ren ◽  
...  

2021 ◽  
Author(s):  
Ryo Yamamoto ◽  
Ryan Chung ◽  
Juan Manuel Vazquez ◽  
Huanjie Sheng ◽  
Philippa Steinberg ◽  
...  

Age is the primary risk factor for many common human diseases including heart disease, Alzheimer's dementias, cancers, and diabetes. Determining how and why tissues age differently is key to understanding the onset and progression of such pathologies. Here, we set out to quantify the relative contributions of genetics and aging to gene expression patterns from data collected across 27 tissues from 948 humans. We show that gene expression patterns become more erratic with age in several different tissues reducing the predictive power of expression quantitative trait loci. Jointly modelling the contributions of age and genetics to transcript level variation we find that the heritability (h2) of gene expression is largely consistent among tissues. In contrast, the average contribution of aging to gene expression variance varied by more than 20-fold among tissues with R2age > h2 in 5 tissues. We find that the coordinated decline of mitochondrial and translation factors is a widespread signature of aging across tissues. Finally, we show that while in general the force of purifying selection is stronger on genes expressed early in life compared to late in life as predicted by Medawar's hypothesis, a handful of highly proliferative tissues exhibit the opposite pattern. In contrast, gene expression variation that is under genetic control is strongly enriched for genes under relaxed constraint. Together we present a novel framework for predicting gene expression phenotypes from genetics and age and provide insights into the tissue-specific relative contributions of genes and the environment to phenotypes of aging.


2020 ◽  
Author(s):  
Timothy J. Durham ◽  
Riza M. Daza ◽  
Louis Gevirtzman ◽  
Darren A. Cusanovich ◽  
William Stafford Noble ◽  
...  

AbstractRecently developed single cell technologies allow researchers to characterize cell states at ever greater resolution and scale. C. elegans is a particularly tractable system for studying development, and recent single cell RNA-seq studies characterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene expression patterns are useful for learning about gene function and give insight into the biochemical state of different cell types; however, in order to understand these cell types, we must also determine how these gene expression levels are regulated. We present the first single cell ATAC-seq study in C. elegans. We collected data in L2 larvae to match the available single cell RNA-seq data set, and we identify tissue-specific chromatin accessibility patterns that align well with existing data, including the L2 single cell RNA-seq results. Using a novel implementation of the latent Dirichlet allocation algorithm, we leverage the single-cell resolution of the sci-ATAC-seq data to identify accessible loci at the level of individual cell types, providing new maps of putative cell type-specific gene regulatory sites, with promise for better understanding of cellular differentiation and gene regulation in the worm.


2021 ◽  
Author(s):  
Catriona Munro ◽  
Felipe Zapata ◽  
Mark Howison ◽  
Stefan Siebert ◽  
Casey W Dunn

Background: Siphonophores are complex colonial animals, consisting of asexually-produced bodies (called zooids) that are functionally specialized for specific tasks, including feeding, swimming, and sexual reproduction. Though this extreme functional specialization has captivated biologists for generations, its genomic underpinnings remain unknown. We use RNA-seq to investigate gene expression patterns in five zooids and one specialized tissue (pneumatophore) across seven siphonophore species. Analyses of gene expression across species present several challenges, including identification of comparable expression changes on gene trees with complex histories of speciation, duplication, and loss. Here, we conduct three analyses of expression. First, we examine gene expression within species. Then, we conduct classical analyses examining expression patterns between species. Lastly, we introduce Speciation Branch Filtering, which allows us to examine the evolution of expression in a phylogenetic framework. Results: Within and across species, we identified hundreds of zooid-specific and species-specific genes, as well as a number of putative transcription factors showing differential expression in particular zooids and developmental stages. We found that gene expression patterns tended to be largely consistent in zooids with the same function across species, but also some large lineage-specific shifts in gene expression. Conclusions: Our findings show that patterns of gene expression have the potential to define zooids in colonial organisms. We also show that traditional analyses of the evolution of gene expression focus on the tips of gene phylogenies, identifying large-scale expression patterns that are zooid or species variable. The new explicit phylogenetic approach we propose here focuses on branches (not tips) offering a deeper evolutionary perspective into specific changes in gene expression within zooids along all branches of the gene (and species) trees.


Sign in / Sign up

Export Citation Format

Share Document