scholarly journals Outbreaks of Mycobacterium tuberculosis MDR strains differentially induce neutrophil respiratory burst involving lipid rafts, p38 MAPK and Syk

2014 ◽  
Vol 14 (1) ◽  
Author(s):  
María Mercedes Romero ◽  
Juan Ignacio Basile ◽  
Beatriz López ◽  
Viviana Ritacco ◽  
Lucía Barrera ◽  
...  
1984 ◽  
Vol 259 (21) ◽  
pp. 13166-13171
Author(s):  
T G Gabig ◽  
B A Lefker ◽  
P J Ossanna ◽  
S J Weiss

2006 ◽  
Vol 290 (1) ◽  
pp. H365-H372 ◽  
Author(s):  
Longkun Zhu ◽  
Pingnian He

Our previous study ( Am J Physiol Heart Circ Physiol 288: H1331–H1338, 2005) demonstrated that TNF-α induced significant leukocyte adhesion without causing increases in microvessel permeability, and that formyl-Met-Leu-Phe-OH (fMLP)-stimulated neutrophils in the absence of adhesion increased microvessel permeability via released reactive oxygen species (ROS). The objective of our present study is to investigate the mechanisms that regulate neutrophil respiratory burst and the roles of fMLP-stimulated ROS release from adherent leukocytes in microvessel permeability. A technique that combines single-microvessel perfusion with autologous blood perfusion was employed in venular microvessels of rat mesenteries. Leukocyte adhesion was induced by systemic application of TNF-α. Microvessel permeability was assessed by measuring hydraulic conductivity ( Lp). The 2-h autologous blood perfusion after TNF-α application increased leukocyte adhesion from 1.2 ± 0.2 to 13.3 ± 1.6 per 100 μm of vessel length without causing increases in Lp. When fMLP (10 μM) was applied to either perfusate ( n = 5) or superfusate ( n = 8) in the presence of adherent leukocytes, Lptransiently increased to 4.9 ± 0.9 and 4.4 ± 0.3 times the control value, respectively. Application of superoxide dismutase or an iron chelator, deferoxamine mesylate, after fMLP application prevented or attenuated the Lpincrease. Chemiluminescence measurements in isolated neutrophils demonstrated that TNF-α alone did not induce ROS release but that preexposure of neutrophils to TNF-α in vivo or in vitro potentiated fMLP-stimulated ROS release. These results suggest a priming role of TNF-α in fMLP-stimulated neutrophil respiratory burst and indicate that the released ROS play a key role in leukocyte-mediated permeability increases during acute inflammation.


2001 ◽  
Vol 12 (1) ◽  
pp. 37-46
Author(s):  
RALPH KETTRITZ ◽  
ADRIAN SCHREIBER ◽  
FRIEDRICH C. LUFT ◽  
HERMANN HALLER

Abstract. Antineutrophil cytoplasmic antibodies (ANCA) may be important in the pathophysiology of necrotizing vasculitis. ANCA activate human neutrophils primed with tumor necrosis factor-α (TNF-α) in vitro. TNF-α priming results in translocation of ANCA antigens to the cell surface, where they are recognized by the antibodies. The signaling mechanisms involved in TNF-α priming and subsequent ANCA-induced activation were investigated. TNF-α-primed neutrophils were stimulated with monoclonal antibodies (MAb) to human myeloperoxidase (MPO) and proteinase 3 (PR3), and with preparations of human ANCA (three patients with PR3-ANCA and two patients with MPO-ANCA). Respiratory burst was measured with superoxide dismutase-inhibitable ferricytochrome C reduction and using dihydro-rhodamine-1,2,3. Phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) and the extracellular signal-regulated kinase (ERK) were assessed by immunoblotting. ANCA-antigen translocation was studied by flow cytometry. The tyrosine phosphorylation inhibitor genistein, but not calphostin or staurosporin, resulted in a significant dose-dependent superoxide generation inhibition (11.6 ± 1.7 nmol to 2.1 ± 0.5 for PR3-ANCA, and 16.0 ± 2.8 to 3.3 ± 1.3 for MPO-ANCA). The p38-MAPK inhibitor (SB202190) and the ERK inhibitor (PD98059) diminished PR3-ANCA-mediated superoxide production dose dependently (11.6 ± 1.7 nmol O2- to 1.9 ± 0.6 with 50 μM SB202190 and 4.0 ± 0.6 with 50 μM PD098059, respectively). For MPO-ANCA, the results were similar (16.0 ± 2.8 nmol to 0.9 ± 1.0 nmol with SB202190 and 6.4 ± 2.4 nmol with PD98059, respectively). Western blot showed phosphorylation of both p38-MAPK and ERK during TNF-α priming. The p38-MAPK inhibitor and the ERK inhibitor showed the strongest effect on respiratory burst when added before TNF-α priming, further supporting an important role for both signaling pathways in the priming process. Flow cytometry showed that p38-MAPK inhibition decreased the translocation of PR3 (by 93 ± 2%) and of MPO (by 64 ± 2%). In contrast, no such effect was seen when ERK was inhibited. Thus, p38-MAPK and ERK are important for the TNF-α-mediated priming of neutrophils enabling subsequent ANCA-induced respiratory burst. However, both pathways show differential effects, whereby p38-MAPK controls the translocation of ANCA antigens to the cell surface.


2007 ◽  
Vol 70 (6) ◽  
pp. 936-940 ◽  
Author(s):  
A. Norrie Pearce ◽  
Elizabeth W. Chia ◽  
Michael V. Berridge ◽  
George R. Clark ◽  
Jacquie L. Harper ◽  
...  

1996 ◽  
Vol 25 (6) ◽  
pp. 489-498 ◽  
Author(s):  
Shigemichi Iha ◽  
Kunzo Orita ◽  
Tomoko Kannoh ◽  
Toshihiko Utsumi ◽  
Eisuke F. Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document