scholarly journals Redox-responsive targeted gelatin nanoparticles for delivery of combination wt-p53 expressing plasmid DNA and gemcitabine in the treatment of pancreatic cancer

BMC Cancer ◽  
2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Jing Xu ◽  
Amit Singh ◽  
Mansoor M Amiji
2021 ◽  
Vol 9 (7) ◽  
pp. e003019
Author(s):  
Robert H Vonderheide ◽  
Kimberly A Kraynyak ◽  
Anthony F Shields ◽  
Autumn J McRee ◽  
Jennifer M Johnson ◽  
...  

BackgroundHuman telomerase reverse transcriptase (hTERT) is frequently classified as a ‘universal’ tumor associated antigen due to its expression in a vast number of cancers. We evaluated plasmid DNA-encoded hTERT as an immunotherapy across nine cancer types.MethodsA phase 1 clinical trial was conducted in adult patients with no evidence of disease following definitive surgery and standard therapy, who were at high risk of relapse. Plasmid DNA encoding one of two hTERT variants (INO-1400 or INO-1401) with or without plasmid DNA encoding interleukin 12 (IL-12) (INO-9012) was delivered intramuscularly concurrent with the application of the CELLECTRA constant-current electroporation device 4 times across 12 weeks. Safety assessments and immune monitoring against native (germline, non-mutated, non-plasmid matched) hTERT antigen were performed. The largest cohort of patients enrolled had pancreatic cancer, allowing for additional targeted assessments for this tumor type.ResultsOf the 93 enrolled patients who received at least one dose, 88 had at least one adverse event; the majority were grade 1 or 2, related to injection site. At 18 months, 54.8% (51/93) patients were disease-free, with median disease-free survival (DFS) not reached by end of study. For patients with pancreatic cancer, the median DFS was 9 months, with 41.4% of these patients remaining disease-free at 18 months. hTERT immunotherapy induced a de novo cellular immune response or enhanced pre-existing cellular responses to native hTERT in 96% (88/92) of patients with various cancer types. Treatment with INO-1400/INO-1401±INO-9012 drove hTERT-specific IFN-γ production, generated hTERT-specific CD4+ and CD8+ T cells expressing the activation marker CD38, and induced hTERT-specific activated CD8 +CTLs as defined by cells expressing perforin and granzymes. The addition of plasmid IL-12 adjuvant elicited higher magnitudes of cellular responses including IFN-γ production, activated CD4+ and CD8+ T cells, and activated CD8+CTLs. In a subset analysis of pancreatic cancer patients, the presence of immunotherapy-induced activated CD8+ T cells expressing PD-1, granzymes and perforin correlated with survival.ConclusionsPlasmid DNA-encoded hTERT/IL-12 DNA immunotherapy was well-tolerated, immune responses were noted across all tumor types, and a specific CD8+ phenotype increased by the immunotherapy was significantly correlated with survival in patients with pancreatic cancer.


2018 ◽  
Vol 10 (38) ◽  
pp. 31915-31927 ◽  
Author(s):  
Yuyuan Wang ◽  
Ben Ma ◽  
Amr A. Abdeen ◽  
Guojun Chen ◽  
Ruosen Xie ◽  
...  

2005 ◽  
Vol 288-289 ◽  
pp. 121-124
Author(s):  
T. Kushibiki ◽  
K. Matsumoto ◽  
T. Nakamura ◽  
Yasuhiko Tabata

NK4, composed of the NH2-terminal hairpin and subsequent four-kringle domains of hepatocyte growth factor (HGF), acts as a potent angiogenesis inhibitor. This study is an investigation to evaluate the feasibility of controlled release of NK4 plasmid DNA in suppressing tumor growth. Controlled release by a biodegradable hydrogel enabled the NK4 plasmid DNA to enhance the tumor suppression effects. Biodegradable microspheres of cationized gelatin were prepared for the controlled release of a NK4 plasmid DNA. The cationized gelatin microspheres incorporating NK4 plasmid DNA were subcutaneously injected to tumor-bearing mice to evaluate the suppressive effects on tumor angiogenesis and growth. The cationized gelatin microspheres incorporating NK4 plasmid DNA could release over 28 days. When the cationized gelatin microspheres incorporating NK4 plasmid DNA were injected into the subcutaneous tissue of mice intraperitoneally inoculated with pancreatic cancer cells, their survival time period was prolonged. Tumor growth was suppressed to a significantly greater extent than free NK4 plasmid DNA. The controlled release of NK4 plasmid DNA suppressed angiogenesis and increased cell apoptosis in the tumor tissue, while it enhanced and prolonged the serum level of NK4 protein. We conclude that the controlled release technology was promising to enhance the tumor suppression effects of NK4 plasmid DNA.


2016 ◽  
Vol 27 (7) ◽  
pp. 1723-1736 ◽  
Author(s):  
Jijin Gu ◽  
Xinyi Chen ◽  
Xiaoqing Ren ◽  
Xiulei Zhang ◽  
Xiaoling Fang ◽  
...  

2020 ◽  
Vol 11 (48) ◽  
pp. 7603-7624
Author(s):  
Ismail Altinbasak ◽  
Mehmet Arslan ◽  
Rana Sanyal ◽  
Amitav Sanyal

This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.


Author(s):  
Byunghee Hwang ◽  
Tae-Il Kim ◽  
Hyunjin Kim ◽  
Sungjin Jeon ◽  
Yongdoo Choi ◽  
...  

A ubiquinone-BODIPY photosensitizer self-assembles into nanoparticles (PS-Q-NPs) and undergoes selective activation within the highly reductive intracellular environment of tumors, resulting in “turn-on” fluorescence and photosensitizing activities.


Sign in / Sign up

Export Citation Format

Share Document