scholarly journals Development of Polysorbate 80/Phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models

2011 ◽  
Vol 6 (1) ◽  
pp. 354 ◽  
Author(s):  
Hua Song ◽  
Hongquan Geng ◽  
Jing Ruan ◽  
Kan Wang ◽  
Chenchen Bao ◽  
...  
1974 ◽  
Vol 13 (03) ◽  
pp. 252-257 ◽  
Author(s):  
K. Rörvik - Schümichen ◽  
G. Hoffmann ◽  
C. Schümichen

SummaryAt least two different 99mTc-Sn-pyrophosphate complexes are formed, as it is shown by comparative in vivo distribution studies: A 2 : 2 Sn : pyrophosphate complex is predominant at higher concentrations. Only this complex shows bone seeking properties. A 2 : 1 Sn : pyrophosphate complex exists only at low concentrations. This complex shows no deposition in bone but in the kidneys. Which complex is predominant depends on the pyrophosphate concentration in the equilibrium. Both complexes are rapidly excreted by the kidneys.


1972 ◽  
Vol 11 (01) ◽  
pp. 70-78
Author(s):  
Esther Miller ◽  
Leopoldo Anghileri

SummaryThe distribution of 32P-polyphosphates (lineal and cross-linked) and 32Porthophosphate in normal and tumor bearing animals has been studied. Differences between the cross-linked and the lineal form are related to a different degree of susceptibility to the hydrolysis by the phosphatases. In contrast to orthophosphate, the polyphosphates showed a lower accumulation in soft tissues which gives an advantageous reduction of the total body radiation dose.


1976 ◽  
Vol 15 (04) ◽  
pp. 183-184 ◽  
Author(s):  
L. J. Anghileri ◽  
M. Heidbreder ◽  
R. Mathes

SummaryThe in vivo distribution of 57Co-hematoporphyrin in adenocarcinoma BW10232-bearing mice has been studied. Tumor-bearing and normal animals exhibit similar patterns of radioactivity accumulation. Twenty-four hours after the administration of the radiocompound the ratios tumor to blood and tumor to muscle indicate a potential value of this radioactive porphyrin for the detection of some types of tumor.


2020 ◽  
Vol 17 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Xueying Zhou ◽  
Zhelong Li ◽  
Wenqi Sun ◽  
Guodong Yang ◽  
Changyang Xing ◽  
...  

Background: Exosomes are cell-derived nanovesicles that play vital roles in intercellular communication. Recently, exosomes are recognized as promising drug delivery vehicles. Up till now, how the in vivo distribution of exosomes is affected by different administration routes has not been fully understood. Methods: In the present study, in vivo distribution of exosomes following intravenous and intraperitoneal injection approaches was systemically analyzed by tracking the fluorescence-labeled exosomes and qPCR analysis of C. elegans specific miRNA abundance delivered by exosomes in different organs. Results: The results showed that exosomes administered through tail vein were mostly taken up by the liver, spleen and lungs while exosomes injected intraperitoneally were more dispersedly distributed. Besides the liver, spleen, and lungs, intraperitoneal injection effectively delivered exosomes into the visceral adipose tissue, making it a promising strategy for obesity therapy. Moreover, the results from fluorescence tracking and qPCR were slightly different, which could be explained by systemic errors. Conclusion: Together, our study reveals that different administration routes cause a significant differential in vivo distribution of exosomes, suggesting that optimization of the delivery route is prerequisite to obtain rational delivery efficiency in detailed organs.


2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1954136
Author(s):  
Sujatha Kumar ◽  
Srimoyee Ghosh ◽  
Geeta Sharma ◽  
Zebin Wang ◽  
Marilyn R. Kehry ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Keya Li ◽  
Xinyue Li ◽  
Guiying Shi ◽  
Xuepei Lei ◽  
Yiying Huang ◽  
...  

AbstractAnimal models provide an opportunity to assess the optimal treatment way and the underlying mechanisms of direct clinical application of adipose-derived stem cells (ADSCs). Previous studies have evaluated the effects of primitive and induced ADSCs in animal models of Parkinson’s disease (PD). Here, eight databases were systematically searched for studies on the effects and in vivo changes caused by ADSC intervention. Quality assessment was conducted using a 10-item risk of bias tool. For the subsequent meta-analysis, study characteristics were extracted and effect sizes were computed. Ten out of 2324 published articles (n = 169 animals) were selected for further meta-analysis. After ADSC therapy, the rotation behavior (10 experiments, n = 156 animals) and rotarod performance (3 experiments, n = 54 animals) were improved (P < 0.000 01 and P = 0.000 3, respectively). The rotation behavior test reflected functional recovery, which may be due to the neurogenesis from neuronally differentiated ADSCs, resulting in a higher pooled effect size of standard mean difference (SMD) (− 2.59; 95% CI, − 3.57 to − 1.61) when compared to that of primitive cells (− 2.18; 95% CI, − 3.29 to − 1.07). Stratified analyses by different time intervals indicated that ADSC intervention exhibited a long-term effect. Following the transplantation of ADSCs, tyrosine hydroxylase-positive neurons recovered in the lesion area with pooled SMD of 13.36 [6.85, 19.86]. Transplantation of ADSCs is a therapeutic option that shows long-lasting effects in animal models of PD. The potential mechanisms of ADSCs involve neurogenesis and neuroprotective effects. The standardized induction of neural form of transplanted ADSCs can lead to a future application in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document