scholarly journals Variations in osmotic adjustment and water relations of Sphaerophysa kotschyana: Glycine betaine, proline and choline accumulation in response to salinity

2014 ◽  
Vol 55 (1) ◽  
Author(s):  
Evren Yildiztugay ◽  
Ceyda Ozfidan-Konakci ◽  
Mustafa Kucukoduk ◽  
Yagmur Duran
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
J. S. Bayuelo-Jiménez ◽  
N. Jasso-Plata ◽  
I. Ochoa

This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitivePhaseolusspecies grown under increasing salinity (0, 60 and 90 mM NaCl). After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%), with the effect of salinity on relative growth rate (RGR) confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR) reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl−accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation inPhaseolusspecies.


2004 ◽  
Vol 52 (2) ◽  
pp. 161-174 ◽  
Author(s):  
M.C. Martı́nez-Ballesta ◽  
V. Martı́nez ◽  
M. Carvajal

1994 ◽  
Vol 24 (7) ◽  
pp. 1495-1502 ◽  
Author(s):  
Paul D. Anderson ◽  
John A. Helms

The tissue water relations of Pinusponderosa Dougl. ex Laws, (ponderosa pine) and Arctostaphylospatula Greene (greenleaf manzanita) seedlings subjected to three levels of soil moisture availability were monitored over a 6-month period. Throughout the study, osmotic potentials at full turgor and at the turgor loss point were approximately 0.5 MPa greater for pine than for manzanita. Osmotic adjustment occurred for both species as evidenced by declines in osmotic potentials at full turgor and at the turgor loss point of 0.5–0.6 MPa over the study period. Pine maintained higher bulk tissue elasticity and lower water content at the turgor loss point relative to manzanita. Moisture regime had little effect on the measured parameters except for apoplasmic water content which increased at moderate and high stress levels for both species. Results suggest that osmotic adjustment occurred, at least partially, as a result of factors other than moisture availability. The lower tissue elasticity and higher water content at the turgor loss point for manzanita suggest that the shrub species is more dependent upon high foliar water content for the maintenance of turgor compared with the conifer.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 125 ◽  
Author(s):  
Pedro García-Caparrós ◽  
Alfonso Llanderal ◽  
Elodie Hegarat ◽  
María Jiménez-Lao ◽  
María Teresa Lao

We evaluated two osmotic adjustment substances (glycine betaine (GB) and glycine (G) and a combination of both glycine + glycine betaine (G + GB) using two modes of application; irrigation and foliar sprays with Dracaena sanderiana plants. The plants were grown in containers and subjected to two levels of NaCl concentrations (2.0 and 7.5 dS m−1) over 8 weeks. Growth, pigment concentrations, and physiological parameters were assessed at the end of the trial. The foliar application of GB resulted in most optimal plant growth and biomass production in the presence of NaCl. The chlorophyll and carotenoid concentrations showed different trends depending on the osmotic adjustment substance applied and the mode of application. Stomatal density and dimensions varied considerably with respect to the osmotic adjustment substance supplied. The concentration of soluble sugars in leaves did not show a clear trend under the different treatments assessed. The exogenous application of G resulted in the highest concentration of free proline and proteins in leaves. The antioxidant capacity in leaves increased with both osmotic adjustment substances, and both means of application, under low and high saline conditions. We concluded that the foliar application of GB can be recommended in order to achieve cost-effective growth of D. sanderiana under saline conditions.


Sign in / Sign up

Export Citation Format

Share Document