scholarly journals P077: Observations on incidence of quinolone resistance genes and their association with SHV genotypes and bacterial sequence type in a Klebsiella pneumoniae outbreak

Author(s):  
HH Balkhy ◽  
S Aljohani ◽  
A Almasood ◽  
T Uzzaman
2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Ágnes Sonnevend ◽  
Akela Ghazawi ◽  
Rayhan Hashmey ◽  
Aliasgher Haidermota ◽  
Safinaz Girgis ◽  
...  

ABSTRACT The emergence of pan-resistant Klebsiella pneumoniae strains is an increasing concern. In the present study, we describe a cluster of 9 pan-resistant K. pneumoniae sequence type 147 (ST147) isolates encountered in 4 patients over nearly 1 year in 3 hospitals of the United Arab Emirates (UAE). The isolates exhibited highly similar genotypes. All produced chromosomally encoded OXA-181, and the majority also produced the NDM-5 carbapenemase. As with the previously described single isolate from the UAE, MS6671, the mgrB was disrupted by a functional, ISEcp1-driven bla OXA-181 insertion causing resistance to carbapenems. The mutation was successfully complemented with an intact mgrB gene, indicating that it was responsible for colistin resistance. bla NDM-5 was located within a resistance island of an approximately 100-kb IncFII plasmid carrying ermB, mph(A), bla TEM-1B, rmtB, bla NDM-5, sul1, aadA2, and dfrA12 resistance genes. Sequencing this plasmid (pABC143-NDM) revealed that its backbone was nearly identical to that of plasmid pMS6671E from which several resistance genes, including bla NDM-5, had been deleted. More extensive similarities of the backbone and the resistance island were found between pABC143C-NDM and the bla NDM-5-carrying IncFII plasmids of two K. pneumoniae ST147 isolates from South Korea, one of which was colistin resistant, and both also produced OXA-181. Notably, one of these strains was isolated from a patient transferred from the UAE. Our data show that this pan-resistant clone has an alarming capacity to maintain itself over an extended period of time and is even likely to be transmitted internationally.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ehsaneh Shams ◽  
Farzaneh Firoozeh ◽  
Rezvan Moniri ◽  
Mohammad Zibaei

The purpose of this study was to determine the prevalence and molecular characterization of plasmid-mediated quinolone resistance (PMQR) genes (qnrA, qnrB, qnrS, aac(6′)-Ib-cr, andqepA) among ESBL-producingKlebsiella pneumoniaeisolates in Kashan, Iran. A total of 185K. pneumoniaeisolates were tested for quinolone resistance and ESBL-producing using the disk diffusion method and double disk synergy (DDST) confirmatory test. ESBL-producing strains were further evaluated for theblaCTX-Mgenes. The PCR method was used to show presence of plasmid-mediated quinolone resistance genes and the purified PCR products were sequenced. Eighty-seven ESBL-producing strains were identified by DDST confirmatory test and majority (70, 80.5%) of which carriedblaCTX-Mgenes including CTX-M-1 (60%), CTX-M-2 (42.9%), and CTX-M-9 (34.3%). Seventy-seven ESBL-producingK. pneumoniaeisolates harbored PMQR genes, which mostly consisted ofaac(6′)-Ib-cr(70.1%) andqnrB(46.0%), followed byqnrS(5.7%). Among the 77 PMQR-positive isolates, 27 (35.1%) and 1 (1.3%) carried 2 and 3 different PMQR genes, respectively. However,qnrAandqepAwere not found in any isolate. Our results highlight high ESBL occurrence with CTX-M type and high frequency of plasmid-mediated quinolone resistance genes among ESBL-producingK. pneumoniaeisolates in Kashan.


2016 ◽  
Vol Inpress (Inpress) ◽  
Author(s):  
Mohsen Heidary ◽  
Hossein Goudarzi ◽  
Ali Hashemi ◽  
Gita Eslami ◽  
Mehdi Goudarzi ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Mohamed H. Al-Agamy ◽  
Taghrid S. El-Mahdy ◽  
Hesham H. Radwan ◽  
Laurent Poirel

The aim of this study was to investigate the mechanisms responsible for resistance to antimicrobials in a collection of enterobacterial isolates recovered from two hospitals in Saudi Arabia. A total of six strains isolated from different patients showing high resistance to carbapenems was recovered in 2015 from two different hospitals, with four being Klebsiella pneumoniae and two Enterobacter cloacae. All isolates except one K. pneumoniae were resistant to tigecycline, but only one K. pneumoniae was resistant to colistin. All produced a carbapenemase according to the Carba NP test, and all were positive for the EDTA-disk synergy test for detection of MBL. Using PCR followed by sequencing, the four K. pneumoniae isolates produced the carbapenemase NDM-1, while the two E. cloacae isolates produced the carbapenemase VIM-1. Genotyping analysis by Multilocus Sequence Typing (MLST) showed that three out of the four K. pneumoniae isolates were clonally related. They had been recovered from the same hospital and belonged to Sequence Type (ST) ST152. In contrast, the fourth K. pneumoniae isolate belonged to ST572. Noticeably, the NDM-1-producing K. pneumoniae additionally produced an extended-spectrum ß-lactamase (ESBL) of the CTX-M type, together with OXA-1 and TEM-1. Surprisingly, the three clonally related isolates produced different CTX-M variants, namely, CTX-M-3, CTX-M-57, and CTX-M-82, and coproduced QnrB, which confers quinolone resistance, and the 16S rRNA methylase RmtC, which confers high resistance to all aminoglycosides. The AAC(6′)-Ib acetyltransferase was detected in both K. pneumoniae and E. cloacae. Mating-out assays using Escherichia coli as recipient were successful for all isolates. The blaNDM-1 gene was always identified on a 70-kb plasmid, whereas the blaVIM-1 gene was located on either a 60-kb or a 150-kb plasmid the two E. cloacae isolates, respectively. To the best of our knowledge, this is the first report of the coexistence of an MBL (NDM-1), an ESBL (CTX-M), a 16S rRNA methylase (RmtC), an acetyltransferase (AAC[6′]-Ib), and a quinolone resistance enzyme (QnrB) in K. pneumoniae isolates recovered from different patients during an outbreak in a Saudi Arabian hospital.


2020 ◽  
Vol 9 (39) ◽  
Author(s):  
Cecilia Kyany’a ◽  
Lillian Musila

ABSTRACT The emergence and rise of mobile colistin resistance genes are of great global concern due to the ease of transfer of resistance to other bacteria. This report describes the genome of a colistin- and multidrug-resistant Klebsiella pneumoniae isolate bearing mcr-8, obtained from a hospitalized patient in Kenya.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Ezequiel Albornoz ◽  
Nathalie Tijet ◽  
Denise De Belder ◽  
Sonia Gomez ◽  
Florencia Martino ◽  
...  

ABSTRACT qnrE1, found in a clinical Klebsiella pneumoniae isolate, was undetectable by PCR assays used for the six qnr families. qnrE1 was located on a conjugative plasmid (ca. 185 kb) and differed from qnrB alleles by 25%. Phylogenetic reconstructions of qnr genes and proteins and analysis of the qnrE1 surroundings showed that this gene belongs to a new qnr family and was likely mobilized by ISEcp1 from the chromosome of Enterobacter spp. to plasmids of K. pneumoniae.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamed F. El-Badawy ◽  
Wael M. Tawakol ◽  
Shaymaa W. El-Far ◽  
Ibrahim A. Maghrabi ◽  
Saleh A. Al-Ghamdi ◽  
...  

Inappropriate use of antibiotics in clinical settings is thought to have led to the global emergence and spread of multidrug-resistant pathogens. The goal of this study was to investigate the prevalence of genes encoding aminoglycoside resistance and plasmid-mediated quinolone resistance among clinical isolates of Klebsiella pneumoniae. All K. pneumoniae isolates were phenotypically identified using API 20E and then confirmed genotypically through amplification of the specific K. pneumoniae phoE gene. All isolates were genotyped by the enterobacterial repetitive intergenic consensus polymerase chain reaction technique (ERIC-PCR). Antibiotic susceptibility testing was done by a modified Kirby-Bauer method and broth microdilution. All resistant or intermediate-resistant isolates to either gentamicin or amikacin were screened for 7 different genes encoding aminoglycoside-modifying enzymes (AMEs). In addition, all resistant or intermediate-resistant isolates to either ciprofloxacin or levofloxacin were screened for 5 genes encoding the quinolone resistance protein (Qnr), 1 gene encoding quinolone-modifying enzyme, and 3 genes encoding quinolone efflux pumps. Biotyping using API 20E revealed 13 different biotypes. Genotyping demonstrated that all isolates were related to 2 main phylogenetic groups. Susceptibility testing revealed that carbapenems and tigecycline were the most effective agents. Investigation of genes encoding AMEs revealed that acc(6′)-Ib was the most prevalent, followed by acc(3′)-II, aph(3′)-IV, and ant(3′′)-I. Examination of genes encoding Qnr proteins demonstrated that qnrB was the most prevalent, followed by qnrS, qnrD, and qnrC. It was found that 61%, 26%, and 12% of quinolone-resistant K. pneumoniae isolates harbored acc(6′)-Ib-cr, oqxAB, and qebA, respectively. The current study demonstrated a high prevalence of aminoglycoside and quinolone resistance genes among clinical isolates of K. pneumoniae.


2020 ◽  
Author(s):  
Yilin Xiong ◽  
Cong Zhang ◽  
Wenting Gao ◽  
Yong Ma ◽  
Qingqing Zhang ◽  
...  

Abstract Background: Klebsiella pneumoniae is a pathogen that frequently causes nosocomial urinary tract infection (UTI), and the prevalence of plasmid-mediated resistance determinants among clinical isolates of K. pneumoniae leads to the appearance of resistance to antibiotics. The aim of this study was to investigate the prevalence of plasmid-mediated quinolone resistance (PMQR) genes in acquired AmpC (ac-AmpC) β‑lactamase‑producing K. pneumoniae isolates from patients with nosocomial UTI and to characterize the transmissibility of plasmids co-harbouring blaAmpC and PMQR genes.Methods: From January 2017 to June 2018, we collected 46 AmpC-producing K. pneumoniae isolates causing nosocomial UTI from a tertiary care hospital in China. β-lactamase, PMQR and virulence genes were detected by PCR and sequencing. Clonal relatedness was assessed using ERIC-PCR and multilocus sequence typing (MLST). Plasmids carrying multiple blaAmpC and PMQR genes were characterized by PCR-based replicon typing (PBRT) and S1-PFGE. Conjugation and electroporation experiments were carried out to assess resistance transfer mediated by plasmids. Overlapping PCR was used to map the genetic context of the blaAmpC genes. Results: In the studied isolates, non-susceptibility of third-generation cephalosporin and fluoroquinolone was very high (>80%). blaCMY-2, blaDHA-1, and quinolone resistance gene (qnr) were detected in 11, 41 and 33 isolates, respectively. Among the isolates, 6 strains co-harboured multiple AmpC and qnrB genes. The blaAmpC and qnrB genes from these six isolates were co-transferrable to recipients via conjugation or electroporation, with IncFIA, IncFIB and IncA/C being the dominant replicons (sizes from ~78 to 217 kb). Forty-six isolates were categorized into 25 ERIC types, and the 6 isolates harbouring multiple blaAmpC and qnrB genes belonged to ST1/STnew1. The conserved genetic structures in blaCMY-2 and blaDHA-1 were identical to those described in the pNF4656 and pSAL-1 plasmids, respectively.Conclusion: This work reports that qnrB is highly prevalent in AmpC-producing K. pneumoniae isolates and illustrates the emergence of plasmids co-harbouring multiple acquired blaAmpC and qnrB genes in K. pneumoniae causing UTI in China. We determined that the IncFIA, IncFIB and IncA/C plasmids carrying blaAmpC with qnrB resistance genes and several mobile genetic elements mediate the local prevalence in K. pneumoniae UTI. The genetic context of blaAmpC was highly conserved.


Sign in / Sign up

Export Citation Format

Share Document