scholarly journals Air change rate vs airflow pathway: bioaerosol containment and removal in patient rooms

Author(s):  
K Grosskopf
Keyword(s):  
Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 259
Author(s):  
Ádám László Katona ◽  
István Ervin Háber ◽  
István Kistelegdi

A huge portion of energy consumption in buildings comes from heating, ventilation, and air conditioning. Numerous previous works assessed the potential of natural ventilation compared to mechanical ventilation and proved their justification on the field. Nevertheless, it is a major difficulty to collect enough information from the literature to make decisions between different natural ventilation solutions with a given situation and boundary conditions. The current study tests the passive air conduction system (PACS) variations in the design phase of a medium-sized new winery’s cellar and production hall in Villány, Hungary. A computational fluid dynamics simulation based comparative analysis enabled to determine the differences in updraft (UD) and downdraught (DD) PACS, whereby the latter was found to be more efficient. While the DD PACS performed an air change range of 1.02 h−1 to 5.98 h−1, the UD PACS delivered −0.25 h−1 to 12.82 h−1 air change rate. The ventilation performance of the DD version possessed lower amplitudes, but the distribution was more balanced under different wind incident angles, thus this version was chosen for construction. It could be concluded that the DD PACS provides a more general applicability for natural ventilation in moderate climates and in small to medium scale industry hall domains with one in- and one outlet.


Measurement ◽  
2018 ◽  
Vol 124 ◽  
pp. 539-548 ◽  
Author(s):  
Marcel Macarulla ◽  
Miquel Casals ◽  
Núria Forcada ◽  
Marta Gangolells ◽  
Alberto Giretti

Author(s):  
Iveta Bullová ◽  
Peter Kapalo ◽  
Dušan Katunský

Air change rate is an important parameter for quantification of ventilation heat losses and also affects the indoor climate of buildings. Indoor air quality is significantly associated with ventilation. If air change isn't sufficient, trapped allergens, pollutants and irritants can degrade the indoor air quality and affect the well-being of a building's occupants. Many studies on ventilation and health have concluded that lower air change rates can have a negative effect on people’s health and low ventilation may result in an increase in allergic diseases. Quantification of air change rate is complicated, since it is affected by a number of parameters, of which the one of the most variable is the air-wind flow. This study aims to determination and comparison of values of the air change rate in two methods - by quantifying of aerodynamic coefficient Cp = Cpe - Cpi – so called aerodynamic quantification of the building and the methodology based on experimental measurements of carbon dioxide in the selected reference room in apartment building.


1997 ◽  
Vol 46 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Masakazu HASEGAWA ◽  
Yuzuru KURABAYASHI ◽  
Toshinori ISHII ◽  
Kazuya YOSHIDA ◽  
Nobukazu UEBAYASHI ◽  
...  

2019 ◽  
Vol 147 ◽  
pp. 35-49 ◽  
Author(s):  
Ardalan Aflaki ◽  
Kamran Hirbodi ◽  
Norhayati Mahyuddin ◽  
Mahmood Yaghoubi ◽  
Masoud Esfandiari

Author(s):  
Minki Sung ◽  
Seongmin Jo ◽  
Sang-Eun Lee ◽  
Moran Ki ◽  
Bo Choi ◽  
...  

In this study, the results of an airflow investigation conducted on 7 June 2015 as part of a series of epidemiologic investigations at Pyeongtaek St. Mary’s Hospital, South Korea, were investigated. The study involved 38 individuals who were infected directly and indirectly with Middle East Respiratory Syndrome (MERS), by a super-spreader patient. Tracer gas experiments conducted on the eighth floor, where the initial patient was hospitalized, confirmed that the tracer gas spread to adjacent patient rooms and rooms across corridors. In particular, the experiment with an external wind direction and speed similar to those during the hospitalization of the initial patient revealed that the air change rate was 17–20 air changes per hour (ACH), with air introduced through the window in the room of the infected patient (room 8104). The tracer gas concentration of room 8110, which was the farthest room, was 7.56% of room 8104, indicating that a high concentration of gas has spread from room 8104 to rooms across the corridor. In contrast, the tracer gas was barely detected in a maternity ward to the south of room 8104, where there was no secondary infected patient. Moreover, MERS is known to spread mainly by droplets through close contact, but long-distance dispersion is probable in certain environments, such as that of a super-spreader patient hospitalized in a room without ventilation, hospitals with a central corridor type, and indoor airflow dispersion due to external wind.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6727
Author(s):  
Alexander Martín-Garín ◽  
José Antonio Millán-García ◽  
Juan María Hidalgo-Betanzos ◽  
Rufino Javier Hernández-Minguillón ◽  
Abderrahmane Baïri

Airtightness is a major issue in architectural design and it has a significant impact on the energy performance of buildings. Moreover, the energy behaviour of built heritage is due, to its singular characteristics, still a great unknown. The aim of this study is to establish a better knowledge of the airtightness of historical buildings, based on an in depth field study using blower-door tests. A set of 37 enclosures were analyzed inside eight buildings located in historical areas of a Spanish city with a significant built heritage. They were constructed between 1882 and 1919 and include diverse construction typologies applied for many building uses such as residential, cultural, educational, administrative and emblematic. The results indicate lower values compared to other previous airtightness studies of historical buildings. The average air change rate was found to be n50 = 9.03 h−1 and the airtightness of the enclosures presented a wide range of between 0.68 and 37.12 h−1. Three main levels of airtightness were identified with two thirds of the tested samples belonging to the intermediate level between 3–20 h−1. To conclude, several correlations have been developed which provide a method to estimate air leakage and could serve as a basis for energy performance studies of these kinds of building.


Sign in / Sign up

Export Citation Format

Share Document